目的研究电接触强化对氧乙炔火焰喷涂后42CrMo基体表面涂层组织与性能的影响,以改善涂层与基体之间的结合强度,提升基体表面性能。方法利用氧乙炔火焰喷涂,在基体表面制备Ni60/WC涂层,再进行电接触强化。通过金相显微镜、扫描电镜及能...目的研究电接触强化对氧乙炔火焰喷涂后42CrMo基体表面涂层组织与性能的影响,以改善涂层与基体之间的结合强度,提升基体表面性能。方法利用氧乙炔火焰喷涂,在基体表面制备Ni60/WC涂层,再进行电接触强化。通过金相显微镜、扫描电镜及能谱分析等方式,对涂层及基体进行显微组织观察和物相分析,利用维氏显微硬度仪测量涂层到基体的硬度分布,并对电接触强化前后的数据进行对比分析。结果在热喷涂涂层厚度一定的情况下,经15 k A电流强度电接触强化后,涂层的致密性显著提高,孔隙明显减少,与基体接触部分的界面缝隙消失,结合方式发生改变。涂层硬度均匀性改善明显,维氏硬度显著提高,由原来400HV提升至720HV左右。涂层内部形成了Cr元素聚集区,W元素扩散明显,形成了合金元素碳化物,对涂层起到弥散强化作用。结论电接触强化能显著提高涂层性能与质量,改变涂层与基体之间的结合方式。展开更多
Ni60-WC particles are used to improve the wear resistance of hard-facing steel due to their high hardness. An emerging technology that combines laser with cold spraying to deposit the hard-facing coatings is known as ...Ni60-WC particles are used to improve the wear resistance of hard-facing steel due to their high hardness. An emerging technology that combines laser with cold spraying to deposit the hard-facing coatings is known as supersonic laser deposition. In this study, Ni60-WC is deposited on low-carbon steel using SLD. The microstructure and performance of the coatings are investigated through SEM, optical microscopy, EDS, XRD, microhardness and pin-on-disc wear tests. The experimental results of the coating processed with the optimal parameters are compared to those of the coating deposited using laser cladding.展开更多
In order to produce the hear-resistant inner layer of hot-forging die, the plasma spraying and plasma re-melting and plasma spray welding were adopted. Substrate material was W6Mo5Cr4V2, including 10%, 20%, 30% tungst...In order to produce the hear-resistant inner layer of hot-forging die, the plasma spraying and plasma re-melting and plasma spray welding were adopted. Substrate material was W6Mo5Cr4V2, including 10%, 20%, 30% tungsten carbide (WC) ceramic powder used as coating material to obtain different Nickel-based WC alloys coating. Micro-structure and micro-hardness analysis of the coating layer are conducted, as well as thermophysical properties for the coating layer were measured. The experimental results show that the coating prepared with 70%Ni60, 30%WC powder has the best properties with plasma spray welding, in which the micro-hardness can achieve 900HV, meanwhile it can improve the thermal property of hot-forging die dramatically.展开更多
文摘目的研究电接触强化对氧乙炔火焰喷涂后42CrMo基体表面涂层组织与性能的影响,以改善涂层与基体之间的结合强度,提升基体表面性能。方法利用氧乙炔火焰喷涂,在基体表面制备Ni60/WC涂层,再进行电接触强化。通过金相显微镜、扫描电镜及能谱分析等方式,对涂层及基体进行显微组织观察和物相分析,利用维氏显微硬度仪测量涂层到基体的硬度分布,并对电接触强化前后的数据进行对比分析。结果在热喷涂涂层厚度一定的情况下,经15 k A电流强度电接触强化后,涂层的致密性显著提高,孔隙明显减少,与基体接触部分的界面缝隙消失,结合方式发生改变。涂层硬度均匀性改善明显,维氏硬度显著提高,由原来400HV提升至720HV左右。涂层内部形成了Cr元素聚集区,W元素扩散明显,形成了合金元素碳化物,对涂层起到弥散强化作用。结论电接触强化能显著提高涂层性能与质量,改变涂层与基体之间的结合方式。
基金sponsored by the Centre for Industrial Photonics, Institute for Manufacture, Department of Engineering, University of Cambridgethe Natural Science Foundation of China (51271170)+1 种基金China International Science and Technology Cooperation Project (2011DFR50540)Major Scientific and Technological Special Key Industrial Project of Zhejiang Province (2012C11001)
文摘Ni60-WC particles are used to improve the wear resistance of hard-facing steel due to their high hardness. An emerging technology that combines laser with cold spraying to deposit the hard-facing coatings is known as supersonic laser deposition. In this study, Ni60-WC is deposited on low-carbon steel using SLD. The microstructure and performance of the coatings are investigated through SEM, optical microscopy, EDS, XRD, microhardness and pin-on-disc wear tests. The experimental results of the coating processed with the optimal parameters are compared to those of the coating deposited using laser cladding.
基金Funded by the National Natural Science Foundation of China(No.50675165)the National Key Technology R&D Program(No.2006BAF02A29)
文摘In order to produce the hear-resistant inner layer of hot-forging die, the plasma spraying and plasma re-melting and plasma spray welding were adopted. Substrate material was W6Mo5Cr4V2, including 10%, 20%, 30% tungsten carbide (WC) ceramic powder used as coating material to obtain different Nickel-based WC alloys coating. Micro-structure and micro-hardness analysis of the coating layer are conducted, as well as thermophysical properties for the coating layer were measured. The experimental results show that the coating prepared with 70%Ni60, 30%WC powder has the best properties with plasma spray welding, in which the micro-hardness can achieve 900HV, meanwhile it can improve the thermal property of hot-forging die dramatically.