For laser cladding a large temperature gradient easily weakened the surface quality by generating cracks and irregular coating surfaces,which in turn affected the bearing capacity and corrosion resistance of coatings ...For laser cladding a large temperature gradient easily weakened the surface quality by generating cracks and irregular coating surfaces,which in turn affected the bearing capacity and corrosion resistance of coatings in the rapid heating and cooling process.The response surface methodology(RSM)was used to predict coating cracks by changing the powder ratio,energy density,and preheating temperature,which obtained the relevant mathematical model.After that,the sensitivity of the crack length to process parameters was analyzed based on the sensitivity analysis method.The effect of Ni60/WC composite powder process parameters on the surface quality was revealed in laser cladding.The crack length first decreased and then increased,and the Smooth decreased with the increased powder ratio.The crack length and Smooth increased with the increased energy density.The crack length decreased and Smooth increased with the increased preheating temperature.Sensitivity analysis showed that the crack length and Smooth were the most sensitive to the powder ratio.Therefore,the process parameters were reasonably selected to control the surface quality.The mathematical model and sensitivity analysis method in the work could improve the surface quality,which provided a theoretical basis for the prediction and control of laser cladding cracks.展开更多
The effect of overlapping treatment on microstructure of laser clad WC/Ni60A composite coating was studied with XRD, SEM, TEM and SAED etc. The results show that during the overlapping treatment the existence of the ...The effect of overlapping treatment on microstructure of laser clad WC/Ni60A composite coating was studied with XRD, SEM, TEM and SAED etc. The results show that during the overlapping treatment the existence of the residual heat and edge angle effect on the substrate has changed the composition and microstructure of the coating by raising the fusion temperature and increasing the dilution degree of the coating.展开更多
The microstructure,microhardness,and corrosion resistance of laser cladding Ni−WC coating on the surface of AlSi5Cu1Mg alloy were investigated by scanning electron microscopy,X-ray diffraction,microhardness testing,im...The microstructure,microhardness,and corrosion resistance of laser cladding Ni−WC coating on the surface of AlSi5Cu1Mg alloy were investigated by scanning electron microscopy,X-ray diffraction,microhardness testing,immersion corrosion testing,and electrochemical measurement.The results show that a smooth coating containing NiAl,Ni_(3)Al,M_(7)C_(3),M_(23)C_(6)phases(M=Ni,Al,Cr,W,Fe)and WC particles is prepared by laser cladding.Under a laser scanning speed of 120 mm/min,the microhardness of the cladding coating is 9−11 times that of AlSi5Cu1Mg,due to the synergistic effect of excellent metallurgical bond and newly formed carbides.The Ni−WC coating shows higher corrosion potential(−318.09 mV)and lower corrosion current density(12.33μA/cm^(2))compared with the matrix.The crack-free,dense cladding coating obviously inhibits the penetration of Cl^(−)and H^(+),leading to the remarkedly improved corrosion resistance of cladding coating.展开更多
基金supported by Science and Technology Major Project of Fujian Province(Grant No.2020HZ03018).
文摘For laser cladding a large temperature gradient easily weakened the surface quality by generating cracks and irregular coating surfaces,which in turn affected the bearing capacity and corrosion resistance of coatings in the rapid heating and cooling process.The response surface methodology(RSM)was used to predict coating cracks by changing the powder ratio,energy density,and preheating temperature,which obtained the relevant mathematical model.After that,the sensitivity of the crack length to process parameters was analyzed based on the sensitivity analysis method.The effect of Ni60/WC composite powder process parameters on the surface quality was revealed in laser cladding.The crack length first decreased and then increased,and the Smooth decreased with the increased powder ratio.The crack length and Smooth increased with the increased energy density.The crack length decreased and Smooth increased with the increased preheating temperature.Sensitivity analysis showed that the crack length and Smooth were the most sensitive to the powder ratio.Therefore,the process parameters were reasonably selected to control the surface quality.The mathematical model and sensitivity analysis method in the work could improve the surface quality,which provided a theoretical basis for the prediction and control of laser cladding cracks.
文摘The effect of overlapping treatment on microstructure of laser clad WC/Ni60A composite coating was studied with XRD, SEM, TEM and SAED etc. The results show that during the overlapping treatment the existence of the residual heat and edge angle effect on the substrate has changed the composition and microstructure of the coating by raising the fusion temperature and increasing the dilution degree of the coating.
文摘The microstructure,microhardness,and corrosion resistance of laser cladding Ni−WC coating on the surface of AlSi5Cu1Mg alloy were investigated by scanning electron microscopy,X-ray diffraction,microhardness testing,immersion corrosion testing,and electrochemical measurement.The results show that a smooth coating containing NiAl,Ni_(3)Al,M_(7)C_(3),M_(23)C_(6)phases(M=Ni,Al,Cr,W,Fe)and WC particles is prepared by laser cladding.Under a laser scanning speed of 120 mm/min,the microhardness of the cladding coating is 9−11 times that of AlSi5Cu1Mg,due to the synergistic effect of excellent metallurgical bond and newly formed carbides.The Ni−WC coating shows higher corrosion potential(−318.09 mV)and lower corrosion current density(12.33μA/cm^(2))compared with the matrix.The crack-free,dense cladding coating obviously inhibits the penetration of Cl^(−)and H^(+),leading to the remarkedly improved corrosion resistance of cladding coating.