在这项工作中,我们采用简单的水热方法在泡沫镍基底上生长了钴酸镍纳米片。结果表明,合成的NiCo2O4纳米片直接用作超级电容器电极,呈现出优异的电化学性能。在电流密度为1 m A·cm^-2时,其面积比电容达到1.26 C·cm^-2;经过1000...在这项工作中,我们采用简单的水热方法在泡沫镍基底上生长了钴酸镍纳米片。结果表明,合成的NiCo2O4纳米片直接用作超级电容器电极,呈现出优异的电化学性能。在电流密度为1 m A·cm^-2时,其面积比电容达到1.26 C·cm^-2;经过10000次充放电循环后,其比电容仍能保持初始容量的97.6%。以NiCo2O4纳米片为正极,活性炭为负极组装的超级电容器在功率密度为1.56和4.5 W·cm^-3时,其能量密度分别达到0.14和0.09 Wh·cm^-3。经过10000次循环后,器件仍能保持初始比电容的95%。以上结果证明合成的钴酸镍纳米片电极在未来的储能器件中具有良好的电化学应用前景。展开更多
采用一步水热法合成了棒状NiCo_2O_4前驱体,并通过调节水热反应过程中碳源(葡萄糖)的加入量以及后续热处理条件(气氛、温度)得到了一系列不同的NiCo_2O_4及NiCo_2O_4@C产物,并对这些产物的结构、形貌及电化学储锂性能进行了测试.结果表...采用一步水热法合成了棒状NiCo_2O_4前驱体,并通过调节水热反应过程中碳源(葡萄糖)的加入量以及后续热处理条件(气氛、温度)得到了一系列不同的NiCo_2O_4及NiCo_2O_4@C产物,并对这些产物的结构、形貌及电化学储锂性能进行了测试.结果表明,适当的葡萄糖加入量(0.5 g)配合合理的煅烧条件(400℃,氮气气氛)可以获得倍率性能和循环稳定性兼具的NiCo_2O_4@C纳米复合材料.在100 m A/g的电流密度下,该材料的首次充/放电比容量为634.1/767.2 m A·h/g,对应的库仑效率为82.7%,5周后的放电比容量为650.1 m A·h/g,容量保持率为84.74%,且在300 m A/g的高电流密度下可逆比容量仍可保持在225.9m A·h/g.展开更多
A kind of sandwich-like NiCo_2O_4/rGO/NiO heterostructure composite has been successfully anchored on nickel foam substrate via a three-step hydrothermal method with successive annealing treatment. The smart combinati...A kind of sandwich-like NiCo_2O_4/rGO/NiO heterostructure composite has been successfully anchored on nickel foam substrate via a three-step hydrothermal method with successive annealing treatment. The smart combination of NiCo_2O_4, reduced graphene oxide(rGO), and NiO nanostructure in the sandwich-like nano architecture shows a promising synergistic effect for supercapacitors with greatly enhanced electrochemical performance. For serving as supercapacitor electrode, the NiCo_2O_4/rGO/NiO heterostructure materials exhibit remarkable specific capacitance of 2644 mF cm^(-2)at current density of 1 mA cm^(-2),and excellent capacitance retentions of 97.5% after 3000 cycles. It is expected that the present heterostructure will be a promising electrode material for high-performance supercapacitors.展开更多
An integrated system has been provided with a-Si/H solar cells as energy conversion device,NiCo2O4 battery-supercapacitor hybrid(BSH)as energy storage device,and light emitting diodes(LEDs)as energy utilization device...An integrated system has been provided with a-Si/H solar cells as energy conversion device,NiCo2O4 battery-supercapacitor hybrid(BSH)as energy storage device,and light emitting diodes(LEDs)as energy utilization device.By designing three-dimensional hierarchical NiCo2O4 arrays as faradic electrode,with capacitive electrode of active carbon(AC),BSHs were assembled with energy density of 16.6 Wh kg-1,power density of 7285 W kg-1,long-term stability with 100% retention after 15,000 cycles,and rather low self-discharge.The NiCo2O4//AC BSH was charged to 1.6 V in 1 s by solar cells and acted as reliable sources for powering LEDs.The integrated system is rational for operation,having an overall efficiency of 8.1% with storage efficiency of 74.24%.The integrated system demonstrates a stable solar power conversion,outstanding energy storage behavior,and reliable light emitting.Our study offers a precious strategy to design a self-driven integrated system for highly efficient energy utilization.展开更多
本文通过水热法在泡沫镍基底上生长了镍钴氧化物前驱体,并利用原子层沉积技术(ALD)在前驱体表面沉积一层超薄(〈1 nm)TiO2薄膜,通过退火处理制备了纳米NiCo2O4/TiO2复合电极材料。结果表明,经过原子层沉积处理以后的纳米NiCo2O4/TiO...本文通过水热法在泡沫镍基底上生长了镍钴氧化物前驱体,并利用原子层沉积技术(ALD)在前驱体表面沉积一层超薄(〈1 nm)TiO2薄膜,通过退火处理制备了纳米NiCo2O4/TiO2复合电极材料。结果表明,经过原子层沉积处理以后的纳米NiCo2O4/TiO2电极材料在保持原有的形貌和结构基础上电化学性能大幅提高,电极材料在2 m A/cm^2的充放电电流密度下比容量达到了2.94 F/cm^2,在10 m A/cm^2的电流密度下,经过4 000次循环以后比容量依然保持较高水平,显示出了很好的循环稳定性。展开更多
A spinel oxide NiCo204 prepared by thermal decomposition is of very high activity for the oxygen evolution reaction(OER)in alkaline solution.The oxygen evolution overpotential on NiCo204 is 0.252-0.262V in 10 M NaOH s...A spinel oxide NiCo204 prepared by thermal decomposition is of very high activity for the oxygen evolution reaction(OER)in alkaline solution.The oxygen evolution overpotential on NiCo204 is 0.252-0.262V in 10 M NaOH solution at 343K and current density 100 mAcm^(-2).展开更多
A rod-like NiCo2O4 modified glassy carbon electrode was fabricated and used for non-enzymatic glucose sensing. The NiCo2O4 was prepared by a facile hydrothermal reaction and subsequently treated in a commercial microw...A rod-like NiCo2O4 modified glassy carbon electrode was fabricated and used for non-enzymatic glucose sensing. The NiCo2O4 was prepared by a facile hydrothermal reaction and subsequently treated in a commercial microwave oven to eliminate the residual water introduced during the hydrothermal procedure. Structural analysis showed that there was no significant structural alteration before and after microwave treatment. The elimination of water residuals was confirmed by the stoichiometric ratio change by using element analysis. The microwave treated NiCo2O4 (M-NiCo2O4) showed excellent performance as a glucose sensor (sensitivity 431.29 μA·mmol/L-1·cm-2). The sensing performance decreases dramatically by soaking the M-NiCo2O4 in water. This result indicates that the introduction of residual water during hydrothermal process strongly affects the electrochemical performance and microwave pre-treatment is crucial for better sensory performance.展开更多
文摘采用一步水热法合成了棒状NiCo_2O_4前驱体,并通过调节水热反应过程中碳源(葡萄糖)的加入量以及后续热处理条件(气氛、温度)得到了一系列不同的NiCo_2O_4及NiCo_2O_4@C产物,并对这些产物的结构、形貌及电化学储锂性能进行了测试.结果表明,适当的葡萄糖加入量(0.5 g)配合合理的煅烧条件(400℃,氮气气氛)可以获得倍率性能和循环稳定性兼具的NiCo_2O_4@C纳米复合材料.在100 m A/g的电流密度下,该材料的首次充/放电比容量为634.1/767.2 m A·h/g,对应的库仑效率为82.7%,5周后的放电比容量为650.1 m A·h/g,容量保持率为84.74%,且在300 m A/g的高电流密度下可逆比容量仍可保持在225.9m A·h/g.
基金supported by the Special Fund for the Development of Strategic Emerging Industries of Shenzhen City of China(No.JCYJ20140419141154246)the National Nature Science Foundation of China(No.11174227)Chinese Universities Scientific Fund
文摘A kind of sandwich-like NiCo_2O_4/rGO/NiO heterostructure composite has been successfully anchored on nickel foam substrate via a three-step hydrothermal method with successive annealing treatment. The smart combination of NiCo_2O_4, reduced graphene oxide(rGO), and NiO nanostructure in the sandwich-like nano architecture shows a promising synergistic effect for supercapacitors with greatly enhanced electrochemical performance. For serving as supercapacitor electrode, the NiCo_2O_4/rGO/NiO heterostructure materials exhibit remarkable specific capacitance of 2644 mF cm^(-2)at current density of 1 mA cm^(-2),and excellent capacitance retentions of 97.5% after 3000 cycles. It is expected that the present heterostructure will be a promising electrode material for high-performance supercapacitors.
基金the support of National Natural Science Foundation of China (Nos. 51702284 and 21878270)Zhejiang Provincial Natural Science Foundation of China (LR19B060002)+5 种基金the Startup Foundation for Hundred-Talent Program of Zhejiang University(112100-193820101/001/022)the support of Shenzhen Science and Technology Project of China (JCYJ20170412105400428)the support of Zhejiang Provincial Natural Science Foundation of China (LR16F040001)Open Project of Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang Universitythe support of Innovation Platform of Energy Storage Engineering and New Material in Zhejiang University (K19-534202-002)Provincial Innovation Team on Hydrogen Electric Hybrid Power Systems in Zhejiang Province
文摘An integrated system has been provided with a-Si/H solar cells as energy conversion device,NiCo2O4 battery-supercapacitor hybrid(BSH)as energy storage device,and light emitting diodes(LEDs)as energy utilization device.By designing three-dimensional hierarchical NiCo2O4 arrays as faradic electrode,with capacitive electrode of active carbon(AC),BSHs were assembled with energy density of 16.6 Wh kg-1,power density of 7285 W kg-1,long-term stability with 100% retention after 15,000 cycles,and rather low self-discharge.The NiCo2O4//AC BSH was charged to 1.6 V in 1 s by solar cells and acted as reliable sources for powering LEDs.The integrated system is rational for operation,having an overall efficiency of 8.1% with storage efficiency of 74.24%.The integrated system demonstrates a stable solar power conversion,outstanding energy storage behavior,and reliable light emitting.Our study offers a precious strategy to design a self-driven integrated system for highly efficient energy utilization.
文摘本文通过水热法在泡沫镍基底上生长了镍钴氧化物前驱体,并利用原子层沉积技术(ALD)在前驱体表面沉积一层超薄(〈1 nm)TiO2薄膜,通过退火处理制备了纳米NiCo2O4/TiO2复合电极材料。结果表明,经过原子层沉积处理以后的纳米NiCo2O4/TiO2电极材料在保持原有的形貌和结构基础上电化学性能大幅提高,电极材料在2 m A/cm^2的充放电电流密度下比容量达到了2.94 F/cm^2,在10 m A/cm^2的电流密度下,经过4 000次循环以后比容量依然保持较高水平,显示出了很好的循环稳定性。
文摘A spinel oxide NiCo204 prepared by thermal decomposition is of very high activity for the oxygen evolution reaction(OER)in alkaline solution.The oxygen evolution overpotential on NiCo204 is 0.252-0.262V in 10 M NaOH solution at 343K and current density 100 mAcm^(-2).
基金supported by the Shandong Provincial Natural Science Foundation,China(No.ZR2017QB015)the National Natural Science Foundation of China(No.21773309)China University of Petroleum Student’s Platform for Innovation and Entrepreneurship Training Program(No.20161449)
文摘A rod-like NiCo2O4 modified glassy carbon electrode was fabricated and used for non-enzymatic glucose sensing. The NiCo2O4 was prepared by a facile hydrothermal reaction and subsequently treated in a commercial microwave oven to eliminate the residual water introduced during the hydrothermal procedure. Structural analysis showed that there was no significant structural alteration before and after microwave treatment. The elimination of water residuals was confirmed by the stoichiometric ratio change by using element analysis. The microwave treated NiCo2O4 (M-NiCo2O4) showed excellent performance as a glucose sensor (sensitivity 431.29 μA·mmol/L-1·cm-2). The sensing performance decreases dramatically by soaking the M-NiCo2O4 in water. This result indicates that the introduction of residual water during hydrothermal process strongly affects the electrochemical performance and microwave pre-treatment is crucial for better sensory performance.