A series of nominal compositions MgAl_(2-x)(Li_(1/3)Ti_(2/3))_(x)O_(4)(x=0,0.04,0.08,0.12,0.16,and 0.20)ceramics were successfully prepared via the conventional solid-state reaction route.The phase compositions,micros...A series of nominal compositions MgAl_(2-x)(Li_(1/3)Ti_(2/3))_(x)O_(4)(x=0,0.04,0.08,0.12,0.16,and 0.20)ceramics were successfully prepared via the conventional solid-state reaction route.The phase compositions,microstructures,and microwave dielectric properties were investigated.The results of x-ray diffraction(XRD)and scanning electron microscopy(SEM)showed that a single phase of MgAl_(2-x)(Li_(1/3)Ti_(2/3))_(x)O_(4)ceramics with a spinel structure was obtained at x≤0.12,whereas the second phase of MgTi_(2)O_(5)appeared when x>0.12.The cell parameters were obtained by XRD refinement.As the x values increased,the unit cell volume kept expanding.This phenomenon could be attributed to the partial substitution of(Li_(1/3)Ti_(2/3))^(3+)for Al^(3+).Results showed that(Li_(1/3)Ti_(2/3))^(3+)doping into MgAl_(2)O_(4)spinel ceramics effectively reduced the sintering temperature and improved the quality factor(Q_f)values.Good microwave dielectric properties were achieved for a sample at x=0.20 sintering at 1500℃in air for 4 h:dielectric constantε_(r)=8.78,temperature coefficient of resonant frequencyτ_(f)=-85 ppm/℃,and Q_(f)=62300 GHz.The Q_(f)value of the x=0.20 sample was about 2 times higher than that of pure MgAl_(2)O_(4)ceramics(31600 GHz).Thus,MgAl_(2-x)(Li_(1/3)Ti_(2/3))_(x)O_(4)ceramics with excellent microwave dielectric properties can be applied to 5G communications.展开更多
4.25Cu-0.75Ni/NiFe2O4 cermets were prepared by doping NiFe2O4 ceramic matrix with the mixed powders of Cu and Ni or Cu-Ni alloy powder as the electrical conducting metallic elements. The effects of technological param...4.25Cu-0.75Ni/NiFe2O4 cermets were prepared by doping NiFe2O4 ceramic matrix with the mixed powders of Cu and Ni or Cu-Ni alloy powder as the electrical conducting metallic elements. The effects of technological parameters, such as the adding modes of metallic elements, the ball milling time, the sintering time and the sintering temperature, on the relative density and resistivity of the cermets were studied. The results show that the resistivity of 4.25Cu-0.75Ni/NiFe2O4 cermets decreases with increasing temperature, and has a turning point at 590℃, which is similar to that of NiFe2O4 ceramic. The sintering temperature and adding modes of metallic elements have a great influence on the properties of 4.25Cu-0.75Ni/NiFe2O4 cermets. When the sintering temperature increases from 1200℃ to 1300℃, the relative density increases from 89.86% to 95.33%, and the resistivity at 960℃ decreases from 0.11Ω·cm to 0.03Ω·cm, respectively. When the metallic elements are added with the mixed powders of Cu and Ni, the cermets of finely and uniformly dispersed metallic phase, high density and electric conductivity are obtained. The relative density and resistivity at 960℃ are 90.23% and 0.04Ω·cm respectively for the cermet samples sintered at 1200℃ for 2h, which are both better than those of the cermets prepared under the same technique conditions but with the metallic elements added as 85Cu-15Ni alloy powders.展开更多
基金the Chengdu University of Technology(Grant No.KYQD201907728)。
文摘A series of nominal compositions MgAl_(2-x)(Li_(1/3)Ti_(2/3))_(x)O_(4)(x=0,0.04,0.08,0.12,0.16,and 0.20)ceramics were successfully prepared via the conventional solid-state reaction route.The phase compositions,microstructures,and microwave dielectric properties were investigated.The results of x-ray diffraction(XRD)and scanning electron microscopy(SEM)showed that a single phase of MgAl_(2-x)(Li_(1/3)Ti_(2/3))_(x)O_(4)ceramics with a spinel structure was obtained at x≤0.12,whereas the second phase of MgTi_(2)O_(5)appeared when x>0.12.The cell parameters were obtained by XRD refinement.As the x values increased,the unit cell volume kept expanding.This phenomenon could be attributed to the partial substitution of(Li_(1/3)Ti_(2/3))^(3+)for Al^(3+).Results showed that(Li_(1/3)Ti_(2/3))^(3+)doping into MgAl_(2)O_(4)spinel ceramics effectively reduced the sintering temperature and improved the quality factor(Q_f)values.Good microwave dielectric properties were achieved for a sample at x=0.20 sintering at 1500℃in air for 4 h:dielectric constantε_(r)=8.78,temperature coefficient of resonant frequencyτ_(f)=-85 ppm/℃,and Q_(f)=62300 GHz.The Q_(f)value of the x=0.20 sample was about 2 times higher than that of pure MgAl_(2)O_(4)ceramics(31600 GHz).Thus,MgAl_(2-x)(Li_(1/3)Ti_(2/3))_(x)O_(4)ceramics with excellent microwave dielectric properties can be applied to 5G communications.
文摘4.25Cu-0.75Ni/NiFe2O4 cermets were prepared by doping NiFe2O4 ceramic matrix with the mixed powders of Cu and Ni or Cu-Ni alloy powder as the electrical conducting metallic elements. The effects of technological parameters, such as the adding modes of metallic elements, the ball milling time, the sintering time and the sintering temperature, on the relative density and resistivity of the cermets were studied. The results show that the resistivity of 4.25Cu-0.75Ni/NiFe2O4 cermets decreases with increasing temperature, and has a turning point at 590℃, which is similar to that of NiFe2O4 ceramic. The sintering temperature and adding modes of metallic elements have a great influence on the properties of 4.25Cu-0.75Ni/NiFe2O4 cermets. When the sintering temperature increases from 1200℃ to 1300℃, the relative density increases from 89.86% to 95.33%, and the resistivity at 960℃ decreases from 0.11Ω·cm to 0.03Ω·cm, respectively. When the metallic elements are added with the mixed powders of Cu and Ni, the cermets of finely and uniformly dispersed metallic phase, high density and electric conductivity are obtained. The relative density and resistivity at 960℃ are 90.23% and 0.04Ω·cm respectively for the cermet samples sintered at 1200℃ for 2h, which are both better than those of the cermets prepared under the same technique conditions but with the metallic elements added as 85Cu-15Ni alloy powders.