As an ionic conductive functional layer of intermediate temperature solid oxide fuel cells(ITSOFC), samarium-doped ceria(SDC)–Li Na SO4nano-composites were synthesized by a sol–gel method and their properties were i...As an ionic conductive functional layer of intermediate temperature solid oxide fuel cells(ITSOFC), samarium-doped ceria(SDC)–Li Na SO4nano-composites were synthesized by a sol–gel method and their properties were investigated. It was found that the content of Li Na SO4 strongly affected the crystal phase, defect concentration, and conductivity of the composites. When the content of Li Na SO4 was 20 wt%, the highest conductivity of the composite was found to be, respectively, 0.22, 0.26, and 0.35 S cm-1at temperatures of 550, 600, and 700 °C, which are much higher than those of SDC. The peak power density of the single cell using this composite as an interlayer was improved to, respectively, 0.23, 0.39, and 0.88 W cm-2at 500, 600, and 700 °C comparing with that of the SDC-based cell. Further, the SDC–Li Na SO4(20 wt%)-based cell also displayed better thermal stability according to the performance measurements at 560 °C for 50 h. These results reveal that SDC–Li Na SO4 composite may be a potential good candidate as interlayer for ITSOFC due to its high ionic conductivity and thermal stability.展开更多
The p-NiO/n-TiO2/polyaniline composites were synthesized via in situ polymerization of aniline. The structure and morphology of the composites were characterized by means of X-ray diffraction(XRD), scanning electron...The p-NiO/n-TiO2/polyaniline composites were synthesized via in situ polymerization of aniline. The structure and morphology of the composites were characterized by means of X-ray diffraction(XRD), scanning electron microscopy(SEM), Fourier transform infrared spectroscopy(FTIR) and UV-Vis absorption spectroscopy. It was found that the p-n junction p-NiO/n-TiO2 particles were trapped in the polyaniline molecular matrix and the polyaniline was deposited on the surface of the particles to form a kind of flower cluster morphologies. The electrochemical behavior of the polyaniline composites was investigated. The electrochemical reactivity of the polyaniline was influenced by the p-NiO/n-TiO2 particles due to the effect of electron-hole pairs in these p-n junction particles. The reversibility of redox process and current intensity of the polyaniline composites with the changing of potential scan rate were also discussed.展开更多
NiO/SDC composites and Ni/SDC cermets for solid oxide fuel cell (SOFC) anode applications were prepared from nickel oxide (NiO) and samada doped ceria (SDC) powders by the powder metallurgy process. The physical...NiO/SDC composites and Ni/SDC cermets for solid oxide fuel cell (SOFC) anode applications were prepared from nickel oxide (NiO) and samada doped ceria (SDC) powders by the powder metallurgy process. The physical and mechanical properties, as well as the microstructure of the NiO/SDC composites and the Ni/SDC cermets were investigated. It is shown that the sintedng temperature of the NiO/SDC composites and NiO content plays an important role in determining the microstructure and properties of the NiO/SDC composites, which, in turn, influences the microstructure, electrical conductivity, and mechanical properties of the Ni/SDC cermets. The present study demonstrated that composition and tprocess parameters must be appropriately selected to optimize the microstructure and the properties of NiO/SDC materials for solid oxide fuel cell applications.展开更多
Homogeneous co-precipitation and hydrothermal treatment were used to prepare nano- and highly dispersed Ni O/YSZ(yttria-stabilized zirconia) composite powders. Composite powders of size less than 100 nm were successfu...Homogeneous co-precipitation and hydrothermal treatment were used to prepare nano- and highly dispersed Ni O/YSZ(yttria-stabilized zirconia) composite powders. Composite powders of size less than 100 nm were successfully prepared. This process did not require separate sintering of the YSZ and Ni O to be used as the raw materials for solid oxide fuel cells. The performance of a cell fabricated using the new powders(max.power density ~0.87 W/cm^2) was higher than that of a cell fabricated using conventional powders(max. power density ~0.73 W/cm^2). Co-precipitation and hydrothermal treatment proved to be very effective processes for reducing cell production costs as well as improving cell performance.展开更多
A coercivity as large as 2.4 kOe has been achieved in the Ni/NiO composite film after an annealing under a magnetic field of 10 kOe and an O_2 partial pressure of 0.001 torr.The coercivity was attributed to the strong...A coercivity as large as 2.4 kOe has been achieved in the Ni/NiO composite film after an annealing under a magnetic field of 10 kOe and an O_2 partial pressure of 0.001 torr.The coercivity was attributed to the strong exchange coupling of Ni and NiO.Small grain size of Ni and NiO was observed after the post-annealing.The enhanced coercivity is probably associated with the domain wall pinning by local energy minima,the distribution of Ni and NiO,and the domain structure in the interface of Ni/NiO generated under the presence of the magnetic field during the post-annealing.展开更多
基金supported by the Natural Science Foundation of China(21173147 and 21376143)973 Program of China(2014CB239700)
文摘As an ionic conductive functional layer of intermediate temperature solid oxide fuel cells(ITSOFC), samarium-doped ceria(SDC)–Li Na SO4nano-composites were synthesized by a sol–gel method and their properties were investigated. It was found that the content of Li Na SO4 strongly affected the crystal phase, defect concentration, and conductivity of the composites. When the content of Li Na SO4 was 20 wt%, the highest conductivity of the composite was found to be, respectively, 0.22, 0.26, and 0.35 S cm-1at temperatures of 550, 600, and 700 °C, which are much higher than those of SDC. The peak power density of the single cell using this composite as an interlayer was improved to, respectively, 0.23, 0.39, and 0.88 W cm-2at 500, 600, and 700 °C comparing with that of the SDC-based cell. Further, the SDC–Li Na SO4(20 wt%)-based cell also displayed better thermal stability according to the performance measurements at 560 °C for 50 h. These results reveal that SDC–Li Na SO4 composite may be a potential good candidate as interlayer for ITSOFC due to its high ionic conductivity and thermal stability.
基金Supported by the National Natural Science Foundation of China(No.51073064)the Science Foundation of Anhui Province, China(No.090414192)
文摘The p-NiO/n-TiO2/polyaniline composites were synthesized via in situ polymerization of aniline. The structure and morphology of the composites were characterized by means of X-ray diffraction(XRD), scanning electron microscopy(SEM), Fourier transform infrared spectroscopy(FTIR) and UV-Vis absorption spectroscopy. It was found that the p-n junction p-NiO/n-TiO2 particles were trapped in the polyaniline molecular matrix and the polyaniline was deposited on the surface of the particles to form a kind of flower cluster morphologies. The electrochemical behavior of the polyaniline composites was investigated. The electrochemical reactivity of the polyaniline was influenced by the p-NiO/n-TiO2 particles due to the effect of electron-hole pairs in these p-n junction particles. The reversibility of redox process and current intensity of the polyaniline composites with the changing of potential scan rate were also discussed.
基金This work was financially supported by the National Key Fundamental Research and Development Program of China (No. G2000026409).
文摘NiO/SDC composites and Ni/SDC cermets for solid oxide fuel cell (SOFC) anode applications were prepared from nickel oxide (NiO) and samada doped ceria (SDC) powders by the powder metallurgy process. The physical and mechanical properties, as well as the microstructure of the NiO/SDC composites and the Ni/SDC cermets were investigated. It is shown that the sintedng temperature of the NiO/SDC composites and NiO content plays an important role in determining the microstructure and properties of the NiO/SDC composites, which, in turn, influences the microstructure, electrical conductivity, and mechanical properties of the Ni/SDC cermets. The present study demonstrated that composition and tprocess parameters must be appropriately selected to optimize the microstructure and the properties of NiO/SDC materials for solid oxide fuel cell applications.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A1A1013782)a fostering project funded by the Ministry of Education, Science and Technology (MEST)
文摘Homogeneous co-precipitation and hydrothermal treatment were used to prepare nano- and highly dispersed Ni O/YSZ(yttria-stabilized zirconia) composite powders. Composite powders of size less than 100 nm were successfully prepared. This process did not require separate sintering of the YSZ and Ni O to be used as the raw materials for solid oxide fuel cells. The performance of a cell fabricated using the new powders(max.power density ~0.87 W/cm^2) was higher than that of a cell fabricated using conventional powders(max. power density ~0.73 W/cm^2). Co-precipitation and hydrothermal treatment proved to be very effective processes for reducing cell production costs as well as improving cell performance.
文摘A coercivity as large as 2.4 kOe has been achieved in the Ni/NiO composite film after an annealing under a magnetic field of 10 kOe and an O_2 partial pressure of 0.001 torr.The coercivity was attributed to the strong exchange coupling of Ni and NiO.Small grain size of Ni and NiO was observed after the post-annealing.The enhanced coercivity is probably associated with the domain wall pinning by local energy minima,the distribution of Ni and NiO,and the domain structure in the interface of Ni/NiO generated under the presence of the magnetic field during the post-annealing.