The crystallization kinetics of an amorphous Ti-rich NiTi film (Ni 46.34at.%, Ti 53.66at.%)prepared by DC magnetron sputtering was determined by non-isothermal techniques. The activation energy of crystallization and ...The crystallization kinetics of an amorphous Ti-rich NiTi film (Ni 46.34at.%, Ti 53.66at.%)prepared by DC magnetron sputtering was determined by non-isothermal techniques. The activation energy of crystallization and the mean value of the Avrami parameter are 382kJ/mol and 0.85, respectively. The calculated isothermal kinetic curse of amorphous film at 773K coincides with the result of X-ray diffraction.The formation of a Ti2Ni phase is accompanied with the crystallization of Ti-rich NiTi film.展开更多
Three kinds of NiTi films with different Ni contents were prepared by DC magnetron sputtering. The crystallization kinetics of amorphous films was determined by using non-isothermal single- scan techniques. The result...Three kinds of NiTi films with different Ni contents were prepared by DC magnetron sputtering. The crystallization kinetics of amorphous films was determined by using non-isothermal single- scan techniques. The results show that the activation energy of crystallization of Ni-rich NiTi film(Ni 51.10 at. pct, Ti 48.90 at. pct) is 715 kJ/mol; while that of Ti-rich films are similar: one is 445 kJ/mol (Ni 46.74 at. pct. Ti 53.26 at. pct), the other is 418 kJ/mol (Ni 43.21 at. pct, Ti 56.7g at. pct), which i5 lower than Ni-rich film. The Avrami parameter n of different films are 0.92 and 0.74 for Ni-rich film and Ti-rich films, respectively. The difference of kinetic parameters for NiTi films with various Ni contents implies that the crystallization behaviors of these films are distinct, which is confirmed by the calculated isothermal kinetics at different temperatures. The thorough research on this phenomenon is in progress.展开更多
The microstructure,mechanical and micro/nano-tribological properties of the 60NiTi film annealed at different temperature were investigated.The results reveal that annealing as-deposited 60NiTi film at 300,375,and 600...The microstructure,mechanical and micro/nano-tribological properties of the 60NiTi film annealed at different temperature were investigated.The results reveal that annealing as-deposited 60NiTi film at 300,375,and 600℃ for 1 h leads to structural relaxation,partial crystallization and full crystallization,respectively.Compared with the structurally relaxed structure,the partially crystallized structure exhibits increased hardness but decreased elastic modulus.This is because that the elastic modulus is reduced by Voigt model while the hardness is improved by composite effect.Due to the highest hardness and ratio of hardness to elastic modulus(H/E),the partially crystallized 60NiTi film has the lowest penetration depth and residual depth(i.e.,groove depth).Besides,the results also reveal that ductile plowing is the dominant wear mechanism for all the annealed 60NiTi films.Under the condition of the ductile plowing,coefficient of friction and wear resistance are related to penetration depth and residual depth,respectively.Therefore,the partially crystallized 60NiTi film shows the best tribological performance at the micro/nano-scale.The current work not only highlights the important roles of hardness and H/E in improving the micro/nano-tribological properties but also concludes an efficient and simple method for simultaneously increasing hardness and H/E.展开更多
The effect of substrate and annealing temperatures on mechanical properties of Ti-rich NiTi films deposited on Si (100) substrates by DC magnetron sputtering was studied by nanoindentation.NiTi films were deposited ...The effect of substrate and annealing temperatures on mechanical properties of Ti-rich NiTi films deposited on Si (100) substrates by DC magnetron sputtering was studied by nanoindentation.NiTi films were deposited at two substrate temperatures viz.300 and 400 ℃.NiTi films deposited at 300 ℃ were annealed for 4 h at four different temperatures,i.e.300,400,500 and 600 C whereas films deposited at 400 ℃ were annealed for 4 h at three different temperatures,i.e.400,500 and 600 ℃.The elastic modulus and hardness of the films were found to be the same in the as-deposited as well as annealed conditions for both substrate temperatures.For a given substrate temperature,the hardness and elastic modulus were found to remain unchanged as long as the films were amorphous.However,both elastic modulus and hardness showed an increase with increasing annealing temperature as the films become crystalline.The results were explained on the basis of the change in microstructure of the film with change in annealing temperature.展开更多
The superelastic properties of NiTi thin films prepared with sputtering were studied. To characterize their superelasticity, tensile and bulging and indentation tests were performed. The measured mechanisms using thes...The superelastic properties of NiTi thin films prepared with sputtering were studied. To characterize their superelasticity, tensile and bulging and indentation tests were performed. The measured mechanisms using these three methods were compared, and the factors that influence superelasticity were described.展开更多
Local annealing of amorphous NiTi thin films was performed by using an Nd:YAG 1064 nm wavelength pulsed laser beam. Raw samples produced by simultaneous sputter deposition from elemental Ni and Ti targets onto unheat...Local annealing of amorphous NiTi thin films was performed by using an Nd:YAG 1064 nm wavelength pulsed laser beam. Raw samples produced by simultaneous sputter deposition from elemental Ni and Ti targets onto unheated Si (100) and Silica (111) substrates were used for annealing. Delicate treatment with 15.92 W/mm^2 power density resulted in crystallization of small spots; while 16.52 and 17.51 W/mm^2 power densities caused ablation of the amorphous layer. Optical microscopy, scanning electron microscopy, X-ray diffraction and atomic force microscopy were performed to characterize the microstructure and surface morphology of the amorphous/crystallized spot patterns.展开更多
Fenton’s oxidation method was successfully used to synthesize an ideal titania film in situ on NiTi shape memory alloy(SMA) for medical applications. Characterized with scanning electron microscopy, X-ray photoelectr...Fenton’s oxidation method was successfully used to synthesize an ideal titania film in situ on NiTi shape memory alloy(SMA) for medical applications. Characterized with scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffractometry, inductively coupled plasma mass spectrometry and electrochemical tests, it is found that the titania film produced by Fenton’s oxidation method on NiTi SMA is nanostructured and has a Ni-free zone near its top surface, which results in a notable improvement in corrosion resistance and a remarkable decrease in leaching of harmful Ni ions from NiTi SMA in simulated body fluids. The improvement of effectiveness to corrosion resistance and the reduction in Ni release of NiTi SMA by Fenton’s oxidation method are comparable to those by oxygen plasma immersion ion implantation reported earlier.展开更多
Chemically polished NiTi shape memory alloy(SMA) substrate was treated with a boiling aqueous solution containing hydrogen peroxide to form titania film in situ at low temperature. The surface characterizations of t...Chemically polished NiTi shape memory alloy(SMA) substrate was treated with a boiling aqueous solution containing hydrogen peroxide to form titania film in situ at low temperature. The surface characterizations of titania film on NiTi substrate were investigated by scanning electron microscopy, X-ray diffractometry and X-ray photoelectron spectroscopy. The results show that titania film is successfully fabricated in situ on NiTi SMA by this surface oxidation method. It is mainly composed of rutile and anatase, whose surface compositions and morphologies are sensitive to H2O2 content. In situ formation mechanism of titania film on NiTi substrate was discussed based on the experimental results.展开更多
The microfabrication and performance NiTi shape memory thin films for microdevice applications were studied by microfabrication processes, which were compatible with those of microelectronics fabrication processes. Th...The microfabrication and performance NiTi shape memory thin films for microdevice applications were studied by microfabrication processes, which were compatible with those of microelectronics fabrication processes. The sputter-deposition conditions, patterning process, and annealing conditions were investigated. The B2 crystal structures of the thin films can be obtained by annealing at 525°C for 30min. The results from x-ray photoemission spectroscopy indicated that the atomic concentration in the surface of the annealed thin films with preferred structures is comparable with those of the as-deposited films.展开更多
基金the National Natural Science FouThdation of China !(GrantWb. 59vs1030)
文摘The crystallization kinetics of an amorphous Ti-rich NiTi film (Ni 46.34at.%, Ti 53.66at.%)prepared by DC magnetron sputtering was determined by non-isothermal techniques. The activation energy of crystallization and the mean value of the Avrami parameter are 382kJ/mol and 0.85, respectively. The calculated isothermal kinetic curse of amorphous film at 773K coincides with the result of X-ray diffraction.The formation of a Ti2Ni phase is accompanied with the crystallization of Ti-rich NiTi film.
基金supported by the National Natural Science Foundation of China under grant 59731030.
文摘Three kinds of NiTi films with different Ni contents were prepared by DC magnetron sputtering. The crystallization kinetics of amorphous films was determined by using non-isothermal single- scan techniques. The results show that the activation energy of crystallization of Ni-rich NiTi film(Ni 51.10 at. pct, Ti 48.90 at. pct) is 715 kJ/mol; while that of Ti-rich films are similar: one is 445 kJ/mol (Ni 46.74 at. pct. Ti 53.26 at. pct), the other is 418 kJ/mol (Ni 43.21 at. pct, Ti 56.7g at. pct), which i5 lower than Ni-rich film. The Avrami parameter n of different films are 0.92 and 0.74 for Ni-rich film and Ti-rich films, respectively. The difference of kinetic parameters for NiTi films with various Ni contents implies that the crystallization behaviors of these films are distinct, which is confirmed by the calculated isothermal kinetics at different temperatures. The thorough research on this phenomenon is in progress.
基金The present work was financially supported by the Fundamental Research Funds for the Central Universities(xzy022019015)the National Natural Science Foundation of China(51675409).
文摘The microstructure,mechanical and micro/nano-tribological properties of the 60NiTi film annealed at different temperature were investigated.The results reveal that annealing as-deposited 60NiTi film at 300,375,and 600℃ for 1 h leads to structural relaxation,partial crystallization and full crystallization,respectively.Compared with the structurally relaxed structure,the partially crystallized structure exhibits increased hardness but decreased elastic modulus.This is because that the elastic modulus is reduced by Voigt model while the hardness is improved by composite effect.Due to the highest hardness and ratio of hardness to elastic modulus(H/E),the partially crystallized 60NiTi film has the lowest penetration depth and residual depth(i.e.,groove depth).Besides,the results also reveal that ductile plowing is the dominant wear mechanism for all the annealed 60NiTi films.Under the condition of the ductile plowing,coefficient of friction and wear resistance are related to penetration depth and residual depth,respectively.Therefore,the partially crystallized 60NiTi film shows the best tribological performance at the micro/nano-scale.The current work not only highlights the important roles of hardness and H/E in improving the micro/nano-tribological properties but also concludes an efficient and simple method for simultaneously increasing hardness and H/E.
基金the support of Defence Research Development Organization under Project DMR-275the support of the National Program on Smart Materials (NPSM)
文摘The effect of substrate and annealing temperatures on mechanical properties of Ti-rich NiTi films deposited on Si (100) substrates by DC magnetron sputtering was studied by nanoindentation.NiTi films were deposited at two substrate temperatures viz.300 and 400 ℃.NiTi films deposited at 300 ℃ were annealed for 4 h at four different temperatures,i.e.300,400,500 and 600 C whereas films deposited at 400 ℃ were annealed for 4 h at three different temperatures,i.e.400,500 and 600 ℃.The elastic modulus and hardness of the films were found to be the same in the as-deposited as well as annealed conditions for both substrate temperatures.For a given substrate temperature,the hardness and elastic modulus were found to remain unchanged as long as the films were amorphous.However,both elastic modulus and hardness showed an increase with increasing annealing temperature as the films become crystalline.The results were explained on the basis of the change in microstructure of the film with change in annealing temperature.
文摘The superelastic properties of NiTi thin films prepared with sputtering were studied. To characterize their superelasticity, tensile and bulging and indentation tests were performed. The measured mechanisms using these three methods were compared, and the factors that influence superelasticity were described.
文摘Local annealing of amorphous NiTi thin films was performed by using an Nd:YAG 1064 nm wavelength pulsed laser beam. Raw samples produced by simultaneous sputter deposition from elemental Ni and Ti targets onto unheated Si (100) and Silica (111) substrates were used for annealing. Delicate treatment with 15.92 W/mm^2 power density resulted in crystallization of small spots; while 16.52 and 17.51 W/mm^2 power densities caused ablation of the amorphous layer. Optical microscopy, scanning electron microscopy, X-ray diffraction and atomic force microscopy were performed to characterize the microstructure and surface morphology of the amorphous/crystallized spot patterns.
基金Project supported by Program for New Century Excellent Talents(NCET) in University of Ministry of Education of ChinaProject(50501007) supported by the National Natural Science Foundation of China+1 种基金Project(BK2007515) supported by the Natural Science Foundation of Jiangsu Province, ChinaProject(7001999) supported by SRG Grant from the Research Committee of the CityU of HK
文摘Fenton’s oxidation method was successfully used to synthesize an ideal titania film in situ on NiTi shape memory alloy(SMA) for medical applications. Characterized with scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffractometry, inductively coupled plasma mass spectrometry and electrochemical tests, it is found that the titania film produced by Fenton’s oxidation method on NiTi SMA is nanostructured and has a Ni-free zone near its top surface, which results in a notable improvement in corrosion resistance and a remarkable decrease in leaching of harmful Ni ions from NiTi SMA in simulated body fluids. The improvement of effectiveness to corrosion resistance and the reduction in Ni release of NiTi SMA by Fenton’s oxidation method are comparable to those by oxygen plasma immersion ion implantation reported earlier.
基金Project(CityU1181/01E) supported by the Research Grants Council of the Hong Kong Special Administrative Region ,China Project(BK2003062) supported by the Natural Science Foundation of Jiangsu Province , China
文摘Chemically polished NiTi shape memory alloy(SMA) substrate was treated with a boiling aqueous solution containing hydrogen peroxide to form titania film in situ at low temperature. The surface characterizations of titania film on NiTi substrate were investigated by scanning electron microscopy, X-ray diffractometry and X-ray photoelectron spectroscopy. The results show that titania film is successfully fabricated in situ on NiTi SMA by this surface oxidation method. It is mainly composed of rutile and anatase, whose surface compositions and morphologies are sensitive to H2O2 content. In situ formation mechanism of titania film on NiTi substrate was discussed based on the experimental results.
文摘The microfabrication and performance NiTi shape memory thin films for microdevice applications were studied by microfabrication processes, which were compatible with those of microelectronics fabrication processes. The sputter-deposition conditions, patterning process, and annealing conditions were investigated. The B2 crystal structures of the thin films can be obtained by annealing at 525°C for 30min. The results from x-ray photoemission spectroscopy indicated that the atomic concentration in the surface of the annealed thin films with preferred structures is comparable with those of the as-deposited films.