期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
Laser powder bed fusion additive manufacturing of NiTi shape memory alloys: a review 被引量:1
1
作者 Shuaishuai Wei Jinliang Zhang +6 位作者 Lei Zhang Yuanjie Zhang Bo Song Xiaobo Wang Junxiang Fan Qi Liu Yusheng Shi 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期1-29,共29页
NiTi alloys have drawn significant attentions in biomedical and aerospace fields due to their unique shape memory effect(SME),superelasticity(SE),damping characteristics,high corrosion resistance,and good biocompatibi... NiTi alloys have drawn significant attentions in biomedical and aerospace fields due to their unique shape memory effect(SME),superelasticity(SE),damping characteristics,high corrosion resistance,and good biocompatibility.Because of the unsatisfying processabilities and manufacturing requirements of complex NiTi components,additive manufacturing technology,especially laser powder bed fusion(LPBF),is appropriate for fabricating NiTi products.This paper comprehensively summarizes recent research on the NiTi alloys fabricated by LPBF,including printability,microstructural characteristics,phase transformation behaviors,lattice structures,and applications.Process parameters and microstructural features mainly influence the printability of LPBF-processed NiTi alloys.The phase transformation behaviors between austenite and martensite phases,phase transformation temperatures,and an overview of the influencing factors are summarized in this paper.This paper provides a comprehensive review of the mechanical properties with unique strain-stress responses,which comprise tensile mechanical properties,thermomechanical properties(e.g.critical stress to induce martensitic transformation,thermo-recoverable strain,and SE strain),damping properties and hardness.Moreover,several common structures(e.g.a negative Poisson’s ratio structure and a diamond-like structure)are considered,and the corresponding studies are summarized.It illustrates the various fields of application,including biological scaffolds,shock absorbers,and driving devices.In the end,the paper concludes with the main achievements from the recent studies and puts forward the limitations and development tendencies in the future. 展开更多
关键词 niti shape memory alloys laser powder bed fusion transformation behavior thermomechanical response lattice structures
下载PDF
Effects of Ta Addition on NiTi Shape Memory Alloys 被引量:3
2
作者 Jianlu MA, Jiangnan LIU+, Zhengpin WANG and Fei XUE (Dept. of Materials Science & Engineering, Xi’an Institute of Technology, Xi’an 710032, China) Kuang-Hsi WU and Zhongjie PU (Department of Mechanical Engineering, Florida International University, USA) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第5期534-536,共3页
The effect of Ta addition on the martensitic transformation characteristics and the X-ray visibility on NiTi shape memory alloy have been studied in (Ni51Ti49)1-xTax system. It was found that the transformation temper... The effect of Ta addition on the martensitic transformation characteristics and the X-ray visibility on NiTi shape memory alloy have been studied in (Ni51Ti49)1-xTax system. It was found that the transformation temperatures of the Ni51Ti49 binary alloy increased drastically by an addition of 0~4 at. pet Ta, but only slightly when the concentration exceeded 4 at. pct; the addition of Ta greatly decreases the sensitivity of the martensitic transformations to the variation in the Ni-Ti ratio. The addition of Ta to the NiTi binary alloy can improve its X-ray visibility. 展开更多
关键词 niti Effects of Ta Addition on niti shape memory alloys TA
下载PDF
Review on structural fatigue of NiTi shape memory alloys:Pure mechanical and thermo-mechanical ones 被引量:3
3
作者 Guozheng Kang Di Song 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2015年第6期245-254,共10页
Structural fatigue of NiTi shape memory alloys is a key issue that should be solved in order to promote their engineering applications and utilize their unique shape memory effect and super-elasticity more sufficientl... Structural fatigue of NiTi shape memory alloys is a key issue that should be solved in order to promote their engineering applications and utilize their unique shape memory effect and super-elasticity more sufficiently. In this paper, the latest progresses made in experimental and theoretical analyses for the structural fatigue features of NiTi shape memory alloys are reviewed. First, macroscopic experimental observations to the pure mechanical and thermo-mechanical fatigue features of the alloys are summarized; then the state-of-arts in the mechanism analysis of fatigue rupture are addressed; further, advances in the construction of fatigue failure models are provided; finally, summary and future topics are outlined. 展开更多
关键词 niti shape memory alloy Mechanical fatigue Thermo-mechanical fatigue Failure mechanism Failure model
下载PDF
Effect of Nitrogen Ion Implantation on the Structure and Corrosion Resistance of Equiatomic NiTi Shape Memory Alloy
4
作者 华英杰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第4期36-39,共4页
To protect the surface of NiTi from corrosion, an ion implantation method was proposed. In the present work, a surface oxidized sample was implanted with nitrogen at energy of 100 keV. The corrosion resistarwe propert... To protect the surface of NiTi from corrosion, an ion implantation method was proposed. In the present work, a surface oxidized sample was implanted with nitrogen at energy of 100 keV. The corrosion resistarwe property was examined by the anodic polarization method in a simulated body fluid (SBF) at a temperature of 37 ℃ and contrasted to non-implanted NiTi samples. The composition and structure of the implanted layers were investigated by XPS. The experimental results from the electrochemical measurements provide an evidence that the nitrogen ion-implantation increases the corrosion resistance of NiTi shape memory alloy. 展开更多
关键词 BIOCOMPATIBILITY niti shape memory alloy ion implantation corrosion resistance
下载PDF
Novel Impact Absorption Device Using NiTi Shape Memory Alloy Strips
5
作者 周瑛 《Journal of Donghua University(English Edition)》 EI CAS 2018年第3期199-201,共3页
The aim is to propose and design a kind of novel impact absorption devices using constant-force elements made from Ni Ti shape memory alloy( SMA) strips for safety protection.The availability evaluation results indica... The aim is to propose and design a kind of novel impact absorption devices using constant-force elements made from Ni Ti shape memory alloy( SMA) strips for safety protection.The availability evaluation results indicate that the constant-force elements can absorb over one half of the impact energy for its martensite transformation and thus the maximum impact force is reduced by nearly 80%.Compared with the ordinary cylindrical compression spring,the device's maximum impact force is reduced by nearly 50%,otherwise it has a very compact structure and insensitivity to the varying impact,and thus it is especially suitable for narrow space and safety purpose. 展开更多
关键词 constant-force niti shape memory alloys(SMA) STRIPS impact absorption
下载PDF
Catastrophe Theory Models for Stress-dependent Behaviour in a NiTi Shape Memory Alloy
6
作者 Bruce Friedman(Sunrise Enterprises, 1023 Hanson Street, Annapolis, Maryland 21403, USA) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1994年第1期31-33,共3页
The measurements by Huibin XU et al of the stress-dependence ot hysteresis in a NiTi shape memo ry alloy are modeled by catastrophe theory. The cusp catastrophe is used with the strain as the behaviour variable and t... The measurements by Huibin XU et al of the stress-dependence ot hysteresis in a NiTi shape memo ry alloy are modeled by catastrophe theory. The cusp catastrophe is used with the strain as the behaviour variable and the control parameters being functions of the stress and the temperature. A two constant model is found to be preferred to a four constant model. 展开更多
关键词 niti Catastrophe Theory Models for Stress-dependent Behaviour in a niti shape memory alloy
下载PDF
Deformation Mechanism of Hot Spinning of NiTi Shape Memory Alloy Tube Based on FEM
7
作者 江树勇 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第5期811-814,共4页
As a successively and locally plastic deformation process, ball spinning is applied to manufacturing thin-walled Nickel-Titanium shape memory alloy (NiTi SMA) tube at high temperature. NiTi SMA tube blank belongs to... As a successively and locally plastic deformation process, ball spinning is applied to manufacturing thin-walled Nickel-Titanium shape memory alloy (NiTi SMA) tube at high temperature. NiTi SMA tube blank belongs to the as-cast state which consists of a lot of dendritic grains and a few equiaxed grains. The compression tests of NiTi SMA were carried out at various strain rates at high temperature in order to obtain the constitutive model of NiTi SMA. Because NiTi SMA is sensitive to the strain rates at high temperature, rigid-viscoplastic finite element method (FEM) is used to simulate ball spinning of thin-walled NiTi SMA tube in order to analyze the deformation behavior of ball spinning of NiTi SMA tube. Stress fields, strain fields as well as velocity fields is obtained by means of rigid-viscoplastic FEM, which lays the profound foundations for studying the metal flow rule in ball spinning and forming perfect spun NiTi SMA tube. 展开更多
关键词 shape memory alloy FEM ball spinning hot spinning niti tube
下载PDF
Effect of Texture on the Grain-Size-Dependent Functional Properties of NiTi Shape Memory Alloys and Texture Gradient Design:A Phase Field Study
8
作者 Bo Xu Beihai Huang +1 位作者 Chong Wang Qingyuan Wang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2024年第1期10-32,共23页
Texture is inevitably introduced during the manufacturing of most NiTi shape memory alloys(SMAs),and the textured nanocrystalline NiTi has been extensively employed in engineering.However,the effect of texture,and the... Texture is inevitably introduced during the manufacturing of most NiTi shape memory alloys(SMAs),and the textured nanocrystalline NiTi has been extensively employed in engineering.However,the effect of texture,and the joint effect of grain size(GS)and texture on the functional properties of NiTi SMAs and the corresponding microscopic mechanisms have not been clearly understood yet.In this work,based on the phase field method,the effect of texture on the GS-dependent functional properties of NiTi SMAs,including super-elasticity(SE),one-way shape memory effect(OWSME),and stress-assisted two-way shape memory effect(SATWSME),is investigated,and the corresponding microscopic mechanisms are revealed.Moreover,the samples with discrete geometrical gradients and/or texture gradients are designed to achieve graded functional properties.The simulation results indicate that the dependence of functional properties on texture is due to the effect of crystallographic orientation on martensite transformation and reorientation,which can lead to different inelastic strains.In the designed samples with texture gradients,the stress–strain responses of sheets with various textures are different,allowing for the coordination of overall deformation of the sample by combining such sheets,with varying inelastic deformation degrees.Thus,the overall response of the sample differs from that without texture gradient,leading to the achievement of graded functional properties.The simulation results and new findings in this work contribute to a deeper understanding of the effects of texture,GS,and their interaction on the functional properties of SMAs,and provide valuable reference for the design and development of SMA-based devices with desired functional properties. 展开更多
关键词 Phase field niti shape memory alloy TEXTURE Grain size Functional property Texture gradient
原文传递
High-Superelasticity NiTi Shape Memory Alloy by Directed Energy Deposition-Arc and Solution Heat Treatment
9
作者 Junyi Ma Lin Yu +2 位作者 Qing Yang Jie Liu Lei Yang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第1期132-144,共13页
Directed energy deposition-arc(DED-Arc)technology has the advantages of simple equipment,low manufacturing cost and high deposition rate,while the use of DED-Arc has problems of microstructure inhomogeneity,position d... Directed energy deposition-arc(DED-Arc)technology has the advantages of simple equipment,low manufacturing cost and high deposition rate,while the use of DED-Arc has problems of microstructure inhomogeneity,position dependence of macroscopic mechanical properties and anisotropy.Therefore,it is necessary to carry out a subsequent heat treatment to improve its microstructure uniformity,mechanical properties and superelasticity.In this investigation,the DED-Arc 15-layer NiTi alloy thin-walled parts with the solution treatment at different process parameters were studied to analyze the effects of solution heat treatment on microstructure,phase composition,phase transformation,microhardness,tensile and superelasticity.The temperature range of solution treatment is 800-1050℃,and the treatment time range is 1-5.5 h.The results show that after solution treatment at 800℃/1 h,the content of precipitated phase decreases,the grain is refined,the microhardness increases,and the mechanical properties in the 0°direction are improved.The strain recovery rate after 10 tensile cycles has increased from 37.13%(as-built)to 49.25%(solid solution treatment).This research provides an effective post treatment method for high-performance DED-Arc NiTi shape memory alloys. 展开更多
关键词 Directed energy deposition-arc(DED-Arc) Cold metal transfer(CMT) niti shape memory alloys Microstructure Phase transformation Solution heat treatment
原文传递
Improvement of tensile superelasticity by aging treatment of NiTi shape memory alloys fabricated by electron beam wire-feed additive manufacturing 被引量:1
10
作者 Ze Pu Dong Du +5 位作者 Dongqi Zhang Zixiang Li Shuai Xue Rui Xi Xiebin Wang Baohua Chang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第14期185-196,共12页
For the first time,this work comprehensively studied the effectiveness of precipitation hardening achieved by aging treatment in improving the tensile superelasticity of NiTi alloys fabricated by elec-tron beam wire-f... For the first time,this work comprehensively studied the effectiveness of precipitation hardening achieved by aging treatment in improving the tensile superelasticity of NiTi alloys fabricated by elec-tron beam wire-feed additive manufacturing(EBAM),which possesses inherent advantages in producing dense and oxidation-free structures.Aging treatments under three temperatures(450,350,and 250℃)and different durations were conducted,and the resultant performance of tensile superelasticity,together with the corresponding evolution of precipitation and phase transformation behavior were investigated for the EBAM-fabricated NiTi alloys.Results showed that by appropriate aging treatment,EBAM fabricated NiTi alloys could achieve excellent recovery rates of approximately 95%and 90%after the 1st and 10th load/unload cycle for a maximum tensile strain of 6%,which were almost the highest achieved so far by AM processed NiTi alloys and close to those of some conventional NiTi alloys.The improvement of tensile superelasticity benefited from the fine and dispersive Ni4Ti3 precipitates,which could be introduced by aging at 350℃ for 4 h or at 250℃ for 200 h.Moreover,the large amount of Ni4Ti3 precipitates would promote the intermediate R-phase transformation and bring a two-stage or three-stage transformation sequence,which depended on whether the distribution of the precipitation was homogeneous or not.This work could provide guidance for the production of NiTi alloys with good tensile superelasticity by EBAM or other additive manufacturing processes. 展开更多
关键词 niti shape memory alloys Electron beam Additive manufacturing Aging treatment Tensile superelasticity
原文传递
Fine-Grained Bulk NiTi Shape Memory Alloy Fabricated by Rapid Solidifcation Process and Its Mechanical Properties and Damping Performance 被引量:6
11
作者 Hongjie Jiang Shanshan Cao +2 位作者 Changbo Ke Xiao Ma Xinping Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2013年第9期855-862,共8页
A near-equiatomic NiTi shape memory alloy was fabricated by rapid solidification process through vacuum arc melting followed by vacuum suction casting in water-cooled thick copper mold. The rapidly solidified (or suc... A near-equiatomic NiTi shape memory alloy was fabricated by rapid solidification process through vacuum arc melting followed by vacuum suction casting in water-cooled thick copper mold. The rapidly solidified (or suction cast) NiTi alloy shows much finer grains and homogenous microstructure, in particular a uniform distribution of various fine precipitates, compared to the conventional cast one. The resultant alloy also exhibits the homogenous Ni distribution in the matrix of the alloy, allowing the martensitic transformation to take place throughout the NiTi alloy matrix simultaneously and resulting in sharper transformation peaks compared to the conventional cast alloy. Moreover, the suction cast NiTJ alloy shows a significant improvement over the conventional cast one, in terms of possessing higher deformation recovery rates and displaying the increased compressive strength and damping capacity by 4% and 20%, respectively. 展开更多
关键词 niti shape memory alloy Rapid solidification Mierostructure Mechanical property Damping performance
原文传递
ADVANCES IN TRANSFORMATION RATCHETING AND RATCHETING-FATIGUE INTERACTION OF NITI SHAPE MEMORY ALLOY 被引量:7
12
作者 Guozheng Kang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2013年第3期221-236,共16页
The accumulation of inelastic deformation occurring in NiTi shape memory alloy under the stress-controlled cyclic loading condition is named transformation ratcheting, since it is mainly caused by the solid-solid tran... The accumulation of inelastic deformation occurring in NiTi shape memory alloy under the stress-controlled cyclic loading condition is named transformation ratcheting, since it is mainly caused by the solid-solid transformation from austenite to martensite phase and vice versa. The transformation ratcheting and its effect on the fatigue life (i.e., transformation-fatigue interaction) are key issues that should be addressed in order to assess the fatigue of NiTi shape memory alloy more accurately. In this paper, the advances in the studies on the transformation ratcheting and rateheting-fatigue interaction of super-elastic NiTi shape memory alloy in recent years are reviewed: First, experimental observation of the uniaxial transformation ratcheting and ratcheting-fatigue interaction of super-elastic NiTi alloy under the stress-controlled cyclic loading conditions is treated, and the detrimental effect of transformation ratcheting on the fatigue life is addressed; Secondly, two types of cyclic constitutive models (i.e., a macroscopic phenomeno- logical model and a micromechanical one based on crystal plasticity) constructed to describe the transformation ratcheting of super-elastic NiTi alloy are discussed; Furthermore, an energy-based failure model is provided and dealt with by comparing its predicted fatigue lives with experimental ones; Finally, some suggestions about future work are made. 展开更多
关键词 niti shape memory alloy transformation ratcheting constitutive model fatigue failure model
原文传递
Fatigue Life Prediction for NiTi Shape Memory Alloy Micro-tubes Under Uniaxial Stress-Controlled One-Way Shape Memory Cyclic Loading
13
作者 Tianxing Zhao Guozheng Kang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2022年第1期15-25,共11页
By choosing the dissipation energy as the damage variable,corresponding damage evolution equations are established,respectively,for the mechanical cyclic loading part and the thermal one during the thermo-mechanical c... By choosing the dissipation energy as the damage variable,corresponding damage evolution equations are established,respectively,for the mechanical cyclic loading part and the thermal one during the thermo-mechanical cyclic loading of NiTi shape memory alloys(SMAs)involving one-way shape memory effect(simply denoted as the OWSME cycling).And then,the evolution law of total damage is obtained by a superposition of such two damage parts.Finally,the uniaxial OWSME fatigue lives of NiTi SMA micro-tubes are predicted by combining the proposed damage model with an adopted failure criterion.The results show that all the predicted fatigue lives are located within the twice scatter band with regard to the experimental ones,and most of them are located within a scatter band of 1.5 times.It is indicated that the predicted OWSME fatigue lives are in good agreement with the experimental ones. 展开更多
关键词 niti shape memory alloy One-way shape memory effect Damage evolution Fatigue life prediction Uniaxial loading
原文传递
Influence of Ti Powder Characteristics on Combustion Synthesis of Porous NiTi Alloy
14
作者 YonghuaLI V.E.Gunther 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第3期248-250,共3页
关键词 Porous niti shape memory alloy Combustion synthesis Titanium powder characteristics
下载PDF
Grain-size gradient NiTi ribbons with multiple-step shape transition prepared by melt-spinning 被引量:1
15
作者 Xiangguang Kong Ying Yang +7 位作者 Shiyu Guo Ran Li Bo Feng Daqiang Jiang Meng Li Changfeng Chen Lishan Cui Shijie Hao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第12期163-168,共6页
A grain-size gradient Ni Ti ribbon with multiple-step shape transition was papered by means of meltspinning.The ribbons contain coarse and fine grains in the free surface side and copper roller surface side,respective... A grain-size gradient Ni Ti ribbon with multiple-step shape transition was papered by means of meltspinning.The ribbons contain coarse and fine grains in the free surface side and copper roller surface side,respectively.The grain-size gradient microstructure induces a two-stage phase transformation behavior in the ribbons during heating or cooling.After tensile deformation pre-treatment,the ribbons exhibit a back-and-forth shape change(shape A→B→A)upon a single heating or cooling process,resulting from the sequential phase transformation through the thickness of the ribbon as dictated by gradient grain size.The activating performance of the ribbons,i.e.shape transition amplitude and speed,can be customized by controlling the pre-deformation strain.This work offers a new opportunity for innovative designs to reach a novel shape memory behavior in Ni Ti alloys conveniently and efficiently. 展开更多
关键词 niti shape memory alloy Melt spinning shape memory effect Martensitic transformation
原文传递
Compression Behavior and Failure Mechanisms of Bionic Porous NiTi Structures Built via Selective Laser Melting
16
作者 Xiaolong Zhang Yue Jiang +5 位作者 Shupeng Wang Shuo Wang Ziqiang Wang Zhenglei Yu Zhihui Zhang Luquan Ren 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2023年第6期926-936,共11页
Inspired by the crystal microstructure of metals and the bamboo,the bionic porous NiTi structures with the porosities in the range of 75.8%–84.9%were built via selective laser melting(SLM).The compression behavior an... Inspired by the crystal microstructure of metals and the bamboo,the bionic porous NiTi structures with the porosities in the range of 75.8%–84.9%were built via selective laser melting(SLM).The compression behavior and the failure mechanisms of the porous NiTi structures were evaluated.It demonstrated an increase in the elastic modulus and ultimate strength when the porosity was decreased,from 3.06 to 7.66 GPa and from 34.1 to 147.6 MPa,respectively.The relationship between the elastic modulus and the porosity obtained by the finite element analysis exhibited similar tendency with the experiment,and agreed well with the Gibson-Ashby model’s prediction.Based on the theoretical model above and the observation of the deformation processing,the plastic deformation behavior and failure mechanisms of the SLMed porous NiTi structures were analyzed. 展开更多
关键词 Selective laser melting niti shape memory alloys Additive manufacturing Porous structure Bionic design
原文传递
Mechanical behaviors of polycrystalline NiTi SMAs of various grain sizes under impact loading
17
作者 XIAO Rui HOU Bing +2 位作者 SUN QingPing ZHAO Han LI YuLong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第7期1401-1411,共11页
This work presents mechanical properties of the NiTi polycrystalline superelastic shape memory alloys(SMA) of 5 different grain sizes under high-speed impacts. The amorphous, nanocrystalline(40, 80, 120 nm) and coarse... This work presents mechanical properties of the NiTi polycrystalline superelastic shape memory alloys(SMA) of 5 different grain sizes under high-speed impacts. The amorphous, nanocrystalline(40, 80, 120 nm) and coarse grain(20 μm) sheets are manufactured with cold rolling and suitable heat treatments. A Hopkinson tensile bar is used to perform tests up to 45 m/s. Highspeed camera system and digital image correlation method are used to get the strain field and particle velocity field at a sampling frequency of 2×10~6 frames/s with a resolution of 924×768 pixels. Nominal stress-strain curves are obtained for all the sheets with a strain rate of about 1000 s~(-1) and they have a similar evolution to the quasi-static case but with much higher stress levels. The rate sensitivity is increased with the grain size and the stress level can reach up to a 70% growth for a coarse grain sheet but be totally insensitive for the amorphous sheet in the strain rate from 10~(-4) to 10~3 s~(-1). A single transformation front can be found under high-speed impact(45 m/s) at the early loading stage. The speed of the transformation front is calculated from strain time histories and the highest front speed of 811 m/s is observed which is never observed before. It also reveals that the front speed depends also on the grain size. With the same loading speed, the bigger the grain size is, the slower the transformation front speed is. 展开更多
关键词 niti shape memory alloys mechanical property rate sensitivity phase transformation grain size effects
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部