期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Effect of chromium substitution on structural, electrical and magnetic properties of NiZn ferrites 被引量:2
1
作者 Guang-sheng LUO Yu-hao HONG +4 位作者 Wei-ping ZHOU Zhen-zhi CHENG Chi-cheng MA Zhong-kai WU Huan-huan HUANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第7期1895-1903,共9页
Ni0.5Zn0.5Fe2-xCrxO4(0≤x≤0.5)ferrites were successfully prepared by conventional solid state reaction method to investigate the effect of chromium substitution on the structural,electrical and magnetic properties.X-... Ni0.5Zn0.5Fe2-xCrxO4(0≤x≤0.5)ferrites were successfully prepared by conventional solid state reaction method to investigate the effect of chromium substitution on the structural,electrical and magnetic properties.X-ray powder diffraction results demonstrate that all the prepared samples are well crystallized single-phase spinel structures without secondary phase.As chromium concentration increases,the lattice parameter and crystallite size gradually decrease.The magnetic measurement indicates that saturation magnetization is substantially suppressed by Cr3+doping,changing from 73.5 A·m2/kg at x=0 to 46.3 A·m2/kg at x=0.5.While the room-temperature electrical resistivity is more than four orders of magnitude enhanced by Cr3+substitution,reaching up to 1.1×108Ω·cm at x=0.5.The dielectric constant monotonously decreases with rising frequency for these ferrites,showing a normal dielectric dispersion behavior.The compositional dependence of dielectric constant is inverse with that of electrical resistivity,which originates from the reduced Fe2+/Fe3+electric dipole number by doping,indicating inherent correlation between polarization and conduction mechanism in ferrite. 展开更多
关键词 nizn ferrite chromium doping electrical resistivity dielectric properties saturation magnetization
下载PDF
Preparation, Microstructure and Magnetic Properties of NiZn Ferrite Thin Films by Spin Spray Plating 被引量:2
2
作者 沈翔 龚荣洲 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第5期708-711,共4页
NiZn ferrite thin fihns were performed on glass substrates of 85 ℃ by spin spray plating method. X-ray diffraction patterns of the films show that the samples have a cubic spinel structure with no extra lines corresp... NiZn ferrite thin fihns were performed on glass substrates of 85 ℃ by spin spray plating method. X-ray diffraction patterns of the films show that the samples have a cubic spinel structure with no extra lines corresponding to any other phases between 75 ℃ and 85 ℃. As the pH value of oxidizing solution increases to 8.3, the saturation magnetization increases to 3.13 × 10^5 A/m and resistivity to 127 m Ω ·cm. Film deposited at pH 7.8 has a smooth surface and definite columnar structure. The large wavy flakes were observed at pH 8.3. The high real part of complex permeability μ′ up to 36.1 and the imaginary part μ″ up to 53.2 were observed at 0.5 GHz by short microstrip line perturbation method. The μ″ of thin film has values higher than 20 at the frequencies between 0.5 GHz and 2 GHz, the film is a promising anti-noise material for high frequency applications, 展开更多
关键词 nizn ferrite films spin spray plating complex permeability saturation magnetization
下载PDF
Structural and Magnetic Studies of CTAC-assisted NiZn Ferrite Films within 0.1-3.5 GHz
3
作者 Xiang SHEN Rongzhou GONG Zekun FENG Huahui HE 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第4期473-476,共4页
Spinel NiZn ferrite thin films were prepared on glass substrates by spray plating method. Adding cetyltrimethylammoniumchloride (CTAC), adsorptive energy of substrate surface increased, and smooth surface and unifor... Spinel NiZn ferrite thin films were prepared on glass substrates by spray plating method. Adding cetyltrimethylammoniumchloride (CTAC), adsorptive energy of substrate surface increased, and smooth surface and uniform columnar film structures were observed. The optimum reaction temperature up to 85℃ and pH up to 7.5 were obtained. As the solution pH value increases from 6.5 to 7.5, the film saturation magnetization increases to 36.1 and the imaginary part μ″ up to 53.2 for NiZn ferrite film at 500 MHz were achieved, and higher magnetic resonance at 508 MHz was observed. As the ferrite plate thickness is 50 μm, the attenuating characteristics for reflection loss ≤-0.8 dB can be obtained in the wide frequency ranging from 0.5 to 2.7 GHz. Theμ″ of thin film has values higher than 20 at the frequencies between 0.5 and 2 GHz, and the thin film can be applied as shielding material in GHz range. 展开更多
关键词 nizn ferrite thin film Spray plating Complex permeability Reflection loss Saturation magnetization
下载PDF
Effects of Cu and Co Substitution on the Properties of NiZn Ferrite Thin Films
4
作者 Le-Zhong Li,Long Peng,Xing-Hua Zhu,and Ding-Yu Yang the College of Optoelectronic Technology,ChengduUniversity of Information Technology,Chengdu 610225,China 《Journal of Electronic Science and Technology》 CAS 2012年第1期88-92,共5页
Cu- and Co-substituted NiZn ferrite thin films, Ni0.4-xZn0.6CuxFe2O4 and Ni0.5Zn0.5CoxFe2-xO4 (0≤x≤0.2), are synthesized by sol-gel process. The crystallographic and magnetic properties of Cu- and Co-substituted N... Cu- and Co-substituted NiZn ferrite thin films, Ni0.4-xZn0.6CuxFe2O4 and Ni0.5Zn0.5CoxFe2-xO4 (0≤x≤0.2), are synthesized by sol-gel process. The crystallographic and magnetic properties of Cu- and Co-substituted NiZn ferrite thin films have been investigated. The lattice parameter decreases with Cu substitution and increases with Co substitution. The saturation magnetization decreases and the coereivity increases with the increase of Cu substitution. Moreover, the saturation magnetization gradually increases with the increase of Co substitution when x≤0.10, but decreases when x〉0.10. Meanwhile, the coereivity initially decreases with the increase of Co substitution when x≤0.10, but increases when x〉0.10. 展开更多
关键词 Crystallographic property Cu and Co substitution magnetic property nizn ferrite thin films sol-gel process.
下载PDF
Preparation of high-permeability NiCuZn ferrite
5
作者 胡军 严密 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第6期580-583,共4页
Appropriate addition of CuO/V2O5 and the reduction of the granularity of the raw materials particle decrease the sintering temperature of NiZn ferrite from 1200 °C to 930 °C. Furthermore, the magnetic proper... Appropriate addition of CuO/V2O5 and the reduction of the granularity of the raw materials particle decrease the sintering temperature of NiZn ferrite from 1200 °C to 930 °C. Furthermore, the magnetic properties of the NiZn ferrite prepared at low temperature of 930 °C is superior to that of the NiZn ferrite prepared by sintering at high temperature of 1200 °C because the microstructure of the NiZn ferrite sintered at 930 °C is more uniform and compact than that of the NiZn ferrite sintered at 1200 °C. The high permeability of 1700 and relative loss coefficient tanδ/μi of 9.0×10?6 at 100 kHz was achieved in the (Ni0.17Zn0.63Cu0.20)Fe1.915O4 ferrite. 展开更多
关键词 nizn ferrite Low temperature High permeability Low loss
下载PDF
Fabrication and magnetic properties of Ni_(0.5)Zn_(0.5)Fe_2O_4 nanofibres by electrospinning 被引量:1
6
作者 向军 沈湘黔 +1 位作者 宋福展 刘明权 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第11期4960-4965,共6页
NiZn ferrite/polyvinylpyrrolidone composite fibres were prepared by sol,el assisted electrospinning. Ni0.5Zn0.5Fe2O4 nanofibres with a pure cubic spinel structure were obtained subsequently by calcination of the compo... NiZn ferrite/polyvinylpyrrolidone composite fibres were prepared by sol,el assisted electrospinning. Ni0.5Zn0.5Fe2O4 nanofibres with a pure cubic spinel structure were obtained subsequently by calcination of the composite fibres at high temperatures. This paper investigates the thermal decomposition process, structures and morphologies of the electrospun composite fibres and the calcined Ni0.5Zn0.5Fe2O4 nanofibres at different temperatures by thermo-gravimetric and differential thermal analysis, x-ray diffraction, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. The magnetic behaviour of the resultant nanofibres was studied by a vibrating sample magnetometer. It is found that the grain sizes of the nanofibres increase significantly and the nanofibre morphology graduMly transforms from a porous structure to a necklace-like nanostructure with the increase of calcination tempera-ture. The Ni0.5Zn0.5Fe2O4 nanofibres obtained at 1000℃ for 2h are characterized by a necklace-like morphology and diameters of 100-200nm. The saturation magnetization of the random Ni0.5Zn0.5Fe2O4 nanofibres increases from 46.5 to 90.2 emu/g when the calcination temperature increases from 450 to 1000℃. The coercivity reaches a maximum value of 11.0 kA/m at a calcination temperature of 600℃. Due to the shape anisotropy, the aligned Ni0.5Zn0.5Fe2O4 nanofibres exhibit an obvious magnetic anisotropy and the ease magnetizing direction is parallel to the nanofibre axis. 展开更多
关键词 nizn ferrite nanofibre ELECTROSPINNING magnetic property shape anisotropy
下载PDF
Improving the Economic Values of the Recycled Plastics Using Nanotechnology Associated Studies 被引量:4
7
作者 W.S.Khan R.Asmatulu +1 位作者 S.Davuluri V.K.Dandin 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第9期854-859,共6页
Recycled polystyrene (PS) cups were chopped up and separately incorporated with multiwall carbon nanotubes (MWCNTs) and NiZn ferrite (Ni0.6Zn0.4Fe2O4) nanoparticles prior to electrospinning under different condi... Recycled polystyrene (PS) cups were chopped up and separately incorporated with multiwall carbon nanotubes (MWCNTs) and NiZn ferrite (Ni0.6Zn0.4Fe2O4) nanoparticles prior to electrospinning under different conditions. These nanoscale inclusions were initially dispersed well in dimethylformamide (DMF), and then known amounts of the recycled PS pieces were added to the dispersions prior to 30 min of sonication followed by 4 h of high-speed agitation at 750 r/min. The thermal, dielectric, surface hydrophobic, and magnetic properties of the resultant nanocomposite fibers were determined by thermal comparative, capacitance bridge, vibrating sample magnetometer (VSM), and goniometer techniques, respectively. Test results confirmed that the physical properties of recycled nanofibers were significantly increased as a function of the inclusion concentrations, which may be because of their excellent properties. The consumption of polymeric products as well as their waste materials has dramatically grown worldwide. Although plastic recycling, reprocessing, and reusing rates are growing, the physical properties and economic value of recycled plastics are significantly low. Consequently, this work provides a detailed explanation of how to improve recycled plastics, making them into highly valued new nanoproducts for various industrial applications, including filtration, textile, transportation, construction, and energy. 展开更多
关键词 Recycled polystyrene nizn ferrite Multiwall carbon nanotubes (MWCNTs) ELECTROSPINNING Nanocomposite fibers Physical properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部