Fluidized reduction roasting is an efficient metallurgical technique.However,its application to nickel laterite ore has rarely been reported.In this paper,the effects of reduction temperature,reduction time,CO concent...Fluidized reduction roasting is an efficient metallurgical technique.However,its application to nickel laterite ore has rarely been reported.In this paper,the effects of reduction temperature,reduction time,CO concentration,and material particle size on the roasting characteristics of ferronickel fluidization reduction were investigated.Combined with X-ray diffraction,scanning electron microscopy-energy dispersive spectrometry(SEM-EDS)characterization,the mineral phases and microscopic morphology of nickel laterite ore and its roasted ores were analyzed in depth.The results indicated that under the condition of a CO/CO_(2)ratio of 1:1,a reduction temperature of 800℃,and a reduction roasting time of 60 min,a nickel-iron concentrate with a nickel grade of 2.10%and an iron content of 45.96%was produced from a raw material with a nickel grade of 1.45%,achieving a remarkable nickel recovery rate of 46.26%.XRD and SEM-EDS analysis indicated that nickel in the concentrate mainly exists in the form of[Fe,Ni],while the unrecovered nickel in the tailings is primarily present in the form of[Fe,Ni]and Ni_(2)SiO_(4)in forsterite.This study established a theoretical foundation for further exploration of fluidized reduction roasting technology.展开更多
To acquire understanding of Ni enrichment from laterite ore,the mineralogy and crystal chemistry of a low grade limonite type nickel laterite ore sample assaying 0.97% Ni from Indonesia were studied using optical micr...To acquire understanding of Ni enrichment from laterite ore,the mineralogy and crystal chemistry of a low grade limonite type nickel laterite ore sample assaying 0.97% Ni from Indonesia were studied using optical microscopy,X-ray diffraction(XRD),scanning electron microscopy(SEM) and electron probe microanalysis(EPMA).According to EPMA results,the mineral includes 80% goethite((Fe,Ni,Al)O(OH)) with 0.87% Ni,15% silicate minerals with lizardite((Mg,Fe,Ni)3Si2O5(OH)) and olivine((Mg,Fe,Ni)2SiO4),and 1.19% Ni,and other minor phases,such as hematite,maghemite,chromite and quartz,and no Ni was detected.The mineralogy of the laterite ore indicates that due to the complicated association of the various phases and the variable distribution of Ni,this refractory laterite ore can not be upgraded by traditional physical beneficiation processes.展开更多
The mineralogical phase transformation of a low-grade nickel laterite ore during pre-roasting process and the extraction of silicon during alkaline leaching process were investigated.The results indicate that the reac...The mineralogical phase transformation of a low-grade nickel laterite ore during pre-roasting process and the extraction of silicon during alkaline leaching process were investigated.The results indicate that the reaction activity of nickel ores is effectively improved by pre-roasting at650°C for2h,because of the transformation of lizardite into magnesium olivine and protoenstatite.When finely ground ore samples(44-61μm)pre-roasted firstly react with sodium hydroxide solution(60g/L)with a solid/liquid ratio of1:5at140°C for120min,the extraction of silicon can reach89.89%,and the other valuable elements of magnesium,iron and nickel are accumulated in the solid residues.The leaching kinetics of nickel laterite ore can be described successfully by the diffusion through the product layer control model.The activation energy is calculated to be11.63kJ/mol and the kinetics equation can be expressed as1-3(1-x)2/3+2(1-x)=13.53×10-2exp[-11.63/(RT)]t.展开更多
Zeolite NaA was successfully prepared from nickel laterite residue for the first time via a fusion-hydrothermal procedure. The structure and morphology of the as-synthesized zeolite NaA were characterized with a range...Zeolite NaA was successfully prepared from nickel laterite residue for the first time via a fusion-hydrothermal procedure. The structure and morphology of the as-synthesized zeolite NaA were characterized with a range of experimental techniques, such as X-ray diffraction, scanning electronic microscopy, and infrared spectroscopy. It was revealed that the structures of the produced zeolites were dependent on the molar ratios of the reactants and hydrothermal reaction conditions, so the synthesis conditions were optimized to obtain pure zeolite NaA. Adsorption of nitrogen and carbon dioxide on the prepared zeolite NaA was also measured and analyzed. The results showed that zeolite NaA could be prepared with reasonable purity, it had physicochemical properties comparable with zeolite NaA made from other methods, and it had excellent gas adsorption properties, thus demonstrating that zeolite NaA could be prepared from nickel laterite residue.展开更多
The sticking phenomenon between molten slag and refractory is one of the crucial problems when preparing ferronickel from laterite ore using rotary hearth fulnace or rotary kiln processes. This study aims to ameliorat...The sticking phenomenon between molten slag and refractory is one of the crucial problems when preparing ferronickel from laterite ore using rotary hearth fulnace or rotary kiln processes. This study aims to ameliorate sticking problems by using silicon dioxide (SiO2) to adjust the melting degree of file briquette during reduction roasting. Thermodynamic analysis indicates that the melting temperature of the slag gradually increases with an increase in the SiO2 proportion (SiO2/(SiO2 + A1203 + MgO) mass ratio). Experimental validations also prove that the briquette retains its original shape when the SiO2 proportion is greater than 75wt%, and sticking problems axe avoided during reduction. A ferronickel product with 8.33wt% Ni and 84.71wt% Fe was prepared via reductive roasting at 1500~C for 90 min with a SiO2 proportion of 75wt% and a C/O molar ratio of 1.0 followed by dry magnetic separation; the corresponding recoveries of Ni and Fe reached 75.70% and 77.97%, respectively. The micro stxucture and phase txmlsformation of reduced briquette reveals that the aggregation and growth of ferroinckel particles were not significantly affected after adding SiO2 to the reduction process.展开更多
Nickel was recovered from nickel laterite using a sulfation-roasting-leaching process and the effects of operation parameters in- cluding acid addition, roasting temperature, and roasting time on nickel extraction and...Nickel was recovered from nickel laterite using a sulfation-roasting-leaching process and the effects of operation parameters in- cluding acid addition, roasting temperature, and roasting time on nickel extraction and iron dissolution were investigated using response sur- face methodology (RSM). Two second-order polynomial models of high significance were presented to show the relationship between the responses and the variables. The analysis of variance (ANOVA) showed high coefficients of determination (R2) of 0.894 and 0.980 for the two models, respectively. Optimum areas of 〉-80% Ni extraction and 〈5% Fe dissolution were obtained by the overlaid contours. Verification experiments in the optimum areas were conducted and the results indicate a close agreement with the predicted values obtained from the models.展开更多
The chloridizing segregation and magnetic separation of low-grade nickel laterites from Yunnan province of China was investigated.The nickel laterites were characterized by microscopic investigations,using X-ray diffr...The chloridizing segregation and magnetic separation of low-grade nickel laterites from Yunnan province of China was investigated.The nickel laterites were characterized by microscopic investigations,using X-ray diffractometry(XRD)and energy dispersive spectrometry(EDS)techniques.The pellets,which were prepared with magnesium chloride and coke as chloride agent and reductant respectively,were heated to a high temperature,and the pellets after cooling were crushed for magnetic separation.A series of experiments were conducted to examine the effect of chlorinating agent dosage,reductant dosage,chloridizing temperature and chloridizing time on enrichment grade of Ni and Co.The results indicate that the four factors have significant effects on the extractions of Ni and Co.The optimum conditions are as follows:the amounts of magnesium chloride and coke are 6%and 2%,respectively,chloridizing temperature is 1 253 K,and chloridizing time is 90 min.Under the conditions,extractions of Ni and Co reach 91.5%and 82.3%,respectively.展开更多
The extraction and separation of zinc, manganese, cobalt and nickel from nickel laterite bacteria leach liquor were carried out using sodium salts of TOPS-99 and Cyanex 272 in kerosene. The unwanted metal ions were re...The extraction and separation of zinc, manganese, cobalt and nickel from nickel laterite bacteria leach liquor were carried out using sodium salts of TOPS-99 and Cyanex 272 in kerosene. The unwanted metal ions were removed by precipitation method and solvent extraction was used to extract/separate Zn, Mn, Co and Ni. The nickel laterite leach liquor which was obtained from bioleaching of chromite overburden samples contained 3.72 g/L Fe, 2.08 g/L Al, 0.44 g/L Ni, 0.02 g/L Co, 0.13 g/L Mn, 0.14 g/L Zn and 0.22 g/L Cr. From this leach liquor, 100% Fe, 96.98% Al and 70.42% Cr were removed by precipitation with Ca CO_3 at pH 4.4 followed by precipitation of remaining Al and Cr with 50% ammonia at p H 5.4. After precipitation, the extraction of Zn from the Fe, Al and Cr free leach liquor was carried out with 0.1 mol/L TOPS-99 followed by Mn extraction with 0.04 mol/L Na TOPS-99. The yields of Zn and Mn were 97.77% and 95.63%, respectively. After Mn extraction, cobalt was removed from the leach liquor using 0.0125 mol/L Na Cyanex 272 and finally nickel extraction was carried out using 0.12 mol/L Na TOPS-99 with 99.84% yield. The stripping of loaded organic(LO) phases were achieved with dilute H_2SO_4.展开更多
Due to the complex chemical composition of nickel ores, the requests for the decrease of production costs, and the increase of nickel extraction in the existing depletion of high-grade sulfide ores around the world, c...Due to the complex chemical composition of nickel ores, the requests for the decrease of production costs, and the increase of nickel extraction in the existing depletion of high-grade sulfide ores around the world, computer modeling of nickel ore leaching process be- came a need and a challenge. In this paper, the design of experiments (DOE) theory was used to determine the optimal experimental design plan matrix based on the D optimality criterion. In the high-pressure sulfuric acid leaching (HPSAL) process for nickel laterite in "Rudjinci" ore in Serbia, the temperature, the sulfuric acid to ore ratio, the stirring speed, and the leaching time as the predictor variables, and the degree of nickel extraction as the response have been considered. To model the process, the multiple linear regression (MLR) and response surface method (RSM), together with the two-level and four-factor full factorial central composite design (CCD) plan, were used. The proposed re- gression models have not been proven adequate. Therefore, the artificial neural network (ANN) approach with the same experimental plan was used in order to reduce operational costs, give a better modeling accuracy, and provide a more successful process optimization. The model is based on the multi-layer neural networks with the back-propagation (BP) learning algorithm and the bipolar sigmoid activation function.展开更多
The preparation of ferronickel alloy from the nickel laterite ore with low Co and high MgO contents was studied by using a pre-reduction-smelting method. The effects of reduction time, calcination temperature, quantit...The preparation of ferronickel alloy from the nickel laterite ore with low Co and high MgO contents was studied by using a pre-reduction-smelting method. The effects of reduction time, calcination temperature, quantity of reductant and calcium oxide (CaO), and pellet diameter on the reduction ratio of Fe and on the pellet strength were investigated. The results show that, for a roasting temperature > 800 A degrees C, a roasting time > 30 min, 1.5wt% added anthracite coal, 5wt% added CaO, and a pellet size of similar to 10 mm, the reduction ratio of Fe exceeds 70% and the compressive strength of the pellets exceeds 10 kg per pellet. Reduction smelting experiments were performed by varying the smelting time, temperature, quantity of reductant and CaO, and reduction ratio of Fe in the pellets. Optimal conditions for the reduction smelting process are as follows: smelting time, 30-45 min; smelting temperature, 1550A degrees C; quantity of reductant, 4wt%-5wt%; and quantity of CaO, 5wt%; leading to an Fe reduction ratio of 75% in the pellets. In addition, the mineral composition of the raw ore and that during the reduction process were investigated by process mineralogy.展开更多
The leaching of magnesium from desiliconization slag of nickel laterite ores by carbonation process was studied.The influence of various parameters was investigated to optimize the conditions and determine the kinetic...The leaching of magnesium from desiliconization slag of nickel laterite ores by carbonation process was studied.The influence of various parameters was investigated to optimize the conditions and determine the kinetics of the reaction.The results show that with increasing stirring speed,liquid-to-solid ratio and reaction time,and decreasing temperature,the leaching rate of magnesium enhances.The leaching process of the desiliconization slag in the range of 288-298 K is controlled by the surface chemical reaction model.The apparent activation energy is-20.45 kJ/mol,and the kinetics model is obtained.展开更多
The application of microwave technique in the hydrometallurgy of nickel laterite ores was described.The mixture of nickel laterite ores and sulfuric acid was pre-treated by microwave irradiation.The dissolving of nick...The application of microwave technique in the hydrometallurgy of nickel laterite ores was described.The mixture of nickel laterite ores and sulfuric acid was pre-treated by microwave irradiation.The dissolving of nickel was conducted in hot water at the atmospheric pressure.The effects of factors,such as microwave power,microwave irradiation time,and sulfuric acid dosage, were investigated.In microwave field,the migration of ionic species and/or rotation of dipolar species promote the liquid?solid reaction process due to the increased contact area of reactants and leaching reaction rate constant.Thanks to the strengthening action of microwave,the microwave-assisted leaching process has its advantages,such as higher extracting rate than conventional atmospheric leaching,and no need for high-pressure operation as high pressure acid leaching(HPAL).The ferric iron in leaching solution could be effectively removed by sodium jarosite process with a little loss of nickel in the jarosite precipitate.展开更多
A chemical precipitation-thermal decomposition method was developed to synthesize Co3O4 nanoparticles using cobalt liquor obtained from the atmospheric pressure acid leaching process of nickel laterite ores. The effec...A chemical precipitation-thermal decomposition method was developed to synthesize Co3O4 nanoparticles using cobalt liquor obtained from the atmospheric pressure acid leaching process of nickel laterite ores. The effects of the precursor reaction temperature, the concentration of Co2+, and the calcination temperature on the specific surface area, morphology, and the electrochemical behavior of the ob- tained Co304 particles were investigated. The precursor basic cobaltous carbonate and cobaltosic oxide products were characterized and ana- lyzed by Fourier transform infrared spectroscopy, thermogravimetric differential thermal analysis, X-ray diffraction, field-emission scanning electron microscopy, specific surface area analysis, and electrochemical analysis. The results indicate that the specific surface area of the Co3O4particles with a diameter of 30 rim, which were obtained under the optimum conditions of a precursor reaction temperature of 30℃, 0.25 mol/L Co2+, and a calcination temperature of 350℃, was 48.89 m2/g. Electrodes fabricated using Co3O4 nanoparticles exhibited good electrochemical properties, with a specific capacitance of 216.3 F/g at a scan rate of 100 mV/s.展开更多
With the development of the new energy industry and the depletion of nickel sulfide ore resources,laterite nickel ore has become the main source of primary nickel,and nickel for power batteries has become a new growth...With the development of the new energy industry and the depletion of nickel sulfide ore resources,laterite nickel ore has become the main source of primary nickel,and nickel for power batteries has become a new growth point in consumption.This paper systematically summarizes the processes,parameters,products,recovery rates,environmental indicators,costs,advantages,disadvantages and the latest research progress of mainstream nickel extraction processes from laterite nickel ore.It also provides a comparative analysis of the environmental impact and economic efficiency of different nickel extraction processes.It is found that the current nickel extraction processes from laterite nickel ore globally for commercial production mainly include the RKEF process for producing ferronickel and the HPAL process for producing intermediate products.The former accounts for about 80%of laterite nickel ore production.Compared to each other,the investment cost per ton of nickel metal production capacity for the RKEF is about 43000$,with an operational cost of about 16000$per ton of nickel metal and a total nickel recovery rate of 77%–90%.Its products are mainly used in stainless steels.For the HPAL process,the investment cost per ton of nickel metal production capacity is about 56000$,with an operational cost of about 15000$per ton of nickel metal and a total nickel recovery rate of 83%–90%.Its products are mainly used in power batteries.The significant differences between the two lies in energy consumption and carbon emissions,with the RKEF being 2.18 and 2.37 times that of the HPAL,respectively.Although the use of clean energy can greatly reduce the operational cost and environmental impact of RKEF,if RKEF is converted to producing high Ni matte,its economic and environmental performance still cannot match that of the HPAL and oxygen-enriched side-blown processes.Therefore,it can be inferred that with the increasing demand for nickel in power batteries,HPAL and oxygen-enriched side blowing processes will play a greater role in laterite nickel extraction.展开更多
Low-grade saprolite nickel laterite,characterized by complicated minerals composition and fine-grained and complex dissemination,was commonly treated with a low recovery efficiency of Ni and Fe by conventional methods...Low-grade saprolite nickel laterite,characterized by complicated minerals composition and fine-grained and complex dissemination,was commonly treated with a low recovery efficiency of Ni and Fe by conventional methods.Hence,an improved direct reduction and magnetic separation process was proposed.Meanwhile,the mechanisms on the enhanced growth of the Ni-Fe particles and the phase transformation in the nickel laterite pellets were explored.The low-nickel concentrates as a nucleating agent can obviously decrease the activation energy for growth of Ni-Fe alloy particles during the improved direct reduction process from 197.10 to 154.81 kJ/mol when the low-nickel concentrates were added from 0 to 20%.Hence,it is able to decrease nucleation barrier,induce the growth of Fe-Ni alloy particles and increase their average size.As a result,the size of Ni-Fe particles in the pellets from less than 10 lm grew to more than 20 lm,which is beneficial for the full liberation and recovery of Ni and Fe in subsequent magnetic separation process.Therefore,the preferable Ni-Fe alloy concentrates with 6.44%Ni and 82.48%Fe can be prepared with corresponding recovery rates of 96.90%and 95.92%,respectively,when adding 20%low-nickel concentrates.展开更多
Strengthening limonitic nickel laterite sintering and reducing CO_(2) emission were performed by the application of multiforce fields including external thermodynamic and pressure fields.Sinter pot tests of limonitic ...Strengthening limonitic nickel laterite sintering and reducing CO_(2) emission were performed by the application of multiforce fields including external thermodynamic and pressure fields.Sinter pot tests of limonitic nickel laterite were carried out,and the relevant industrial production was briefed.The chemistry and mineralogy of product sinter and the thermodynamic and kinetic conditions during sintering were analyzed to reveal the relevant mechanism.The results indicate that sintering performance of limonitic nickel laterite in the new sintering process with multi-force fields is significantly improved with tumble index and productivity increased by 24.11%and 18.56%,respectively,and solid fuel rate reduced by 23.21%,compared with those in traditional sintering process.In this case,greenhouse and pollutant gas emissions are greatly reduced,and metallurgical performances of product sinter are excellent.The industrial production has been successfully conducted,indicating a bright application prospect.Mechanism analysis shows that the great improvement of thermodynamic and kinetic conditions during sintering and the densification of loose sinter can be achieved via the application of multi-force fields.Sinter microstructure is transformed from large thin-wall pores to small thin-wall pores or medium thick-wall pores with the dramatic reduction of sinter porosity and more formation of silico-ferrite of calcium and alumina(SFCA).Meanwhile,the homogenization of mineral compositions is achieved,and much denser interlocking texture between hercynite and SFCA is formed.The application of multi-force fields contributes to the substantial improvement of sintering performance of limonitic nickel laterite and CO_(2) emission reduction.展开更多
Stainless steel crude alloy recovery from direct smelting of low-grade chromite, nickel laterite and manganese ores was investigated. The mixed low-grade ores were directly smelted in an elevator furnace at smelting t...Stainless steel crude alloy recovery from direct smelting of low-grade chromite, nickel laterite and manganese ores was investigated. The mixed low-grade ores were directly smelted in an elevator furnace at smelting temperatures ranging from 1550 to 1600 ℃. Smelting experiments were conducted in a laboratory elevator furnace equipped with 8 U-shaped high- quality molybdenum disilicide heating elements. A low-grade coal was used as the reductant. Experimental results showed that the recovery of Fe, Cr, Ni, Mn and Si within the alloy increased from 34.22, 60.27, 57.14, 25.42 and 13.02% to 69.91, 99.26, 86.02, 60.8 and 34.21%, respectively, when the temperature was increased from 1550 to 1600 ℃. There was a general increase in the total recoveries of Fe, Cr, and Ni in the alloy with CaO addition increasing from 0.4 g up to 1.2 g. However, the recoveries of Mn and Si vividly decreased as the CaO contents were increased. In general, the recoveries of the metal contents of the crude alloy increase with the increase in the amount of manganese ore. Compared to the recoveries of Fe, Cr, and Ni when CaO was added, the recoveries of Fe, Cr and Ni were lower when manganese ore was used as an additive.展开更多
To achieve the more extensive utilization of limonitic nickel laterite,the difference of sintering performance of different types of limonitic nickel laterite including high-gangue and low-gangue nickel ores was inves...To achieve the more extensive utilization of limonitic nickel laterite,the difference of sintering performance of different types of limonitic nickel laterite including high-gangue and low-gangue nickel ores was investigated by sinter pot tests and relevant mechanism analyses such as thermodynamic analysis and the chemistry and mineralogy of product sinter.With the type of limonitic nickel laterite transformed from high-gangue to low-gangue nickel ore,tumble index and productivity are improved from 45.87%and 0.97 t m^(-2) h^(-1) to 50.16%and 1.05 t m^(-2) h^(-1),respectively,and solid fuel rate is reduced from 140.52 to 131.13 kg/t,indicating that the low-gangue nickel ore possesses relatively better sintering performance.This is mainly due to the fact that the much lower contents of MgO and Al2O3 improve the formation ability and fluidity of liquid phase,which eventually contributes to the formation of relatively tighter sinter microstructure with the lower sinter porosity,more silico-ferrite of calcium and alumina amount and better bonding of hercynite by liquid phases.In addition,the metallurgical performance and nickel content of product sinter would not be reduced as different types of limonitic nickel laterite are blended for sintering.On this basis,it is entirely feasible to more widely utilize limonitic nickel laterite and simultaneously obtain much better-quality Ni-containing product sinter via effective sintering strengthening technologies.展开更多
In consideration of the abundant moisture of limonitic nickel laterite mined,it is essential to determine whether the selfpossessed moisture of limonitic nickel laterite after pre-dried is appropriate for sintering.Th...In consideration of the abundant moisture of limonitic nickel laterite mined,it is essential to determine whether the selfpossessed moisture of limonitic nickel laterite after pre-dried is appropriate for sintering.Thus,based on the characterization of limonitic nickel laterite,the influence of its self-possessed moisture on sintering performance was expounded by sinter pot tests and the relevant mechanism was revealed by the systematical analyses of the granulation properties of sinter mixture,thermodynamic conditions during sintering and mineralogy of product sinter.The results indicate that the selfpossessed moisture of limonitic nickel laterite indeed has significant infuence on its sintering performance.At the optimum self-possessed moisture of 21 mass%,sinter indices are relatively better with tumble index,productivity and solid fuel rate of 48.87%,1.04 t m^(-2) h^(-1)and 136.52 kg t^(-1),respectively,due to the superior granulation properties of sinter mixture and thermodynamic conditions during sintering,relatively large amount of silico-ferrite of calcium and alumina and tighter sinter microstructure.However,sintering performance of limonitic nickel laterite is still much poorer than that of ordinary iron ores.It is feasible to strengthen limonitic nickel laterite sintering by inhibiting the over-fast sintering speed and improving the thermodynamic conditions during sintering.展开更多
The process of deep reduction and magnetic separation was proposed to enrich nickel and iron from laterite nickel ores.Results show that nickel-iron concentrates with nickel grade of 6.96%,nickel recovery of 94.06%,ir...The process of deep reduction and magnetic separation was proposed to enrich nickel and iron from laterite nickel ores.Results show that nickel-iron concentrates with nickel grade of 6.96%,nickel recovery of 94.06%,iron grade of 34.74%,and iron recovery of 80.44% could be obtained after magnetic separation under the conditions of reduction temperature of 1275℃,reduction time of 50 min,slag basicity of 1.0,carbon-containing coefficient of 2.5,and magnetic field strength of 72 kA/m.Reduction temperature and time affected the possibility of deep reduction and reaction progress.Slag basicity affected the composition of slag in burden and the spilling and enriching rate of nickel-iron from a matrix to form nickel-iron particles.Nickel-iron particles were generated,aggregated,and grew gradually in the reduction process.Nickel-iron particles can be effectively separated from gangue minerals by magnetic separation.展开更多
基金Project(XDA 29020100)supported by the Strategic Priority Research Program of the Chinese Academy of SciencesProject(2022YFE0206600)supported by National Key R&D Program of China。
文摘Fluidized reduction roasting is an efficient metallurgical technique.However,its application to nickel laterite ore has rarely been reported.In this paper,the effects of reduction temperature,reduction time,CO concentration,and material particle size on the roasting characteristics of ferronickel fluidization reduction were investigated.Combined with X-ray diffraction,scanning electron microscopy-energy dispersive spectrometry(SEM-EDS)characterization,the mineral phases and microscopic morphology of nickel laterite ore and its roasted ores were analyzed in depth.The results indicated that under the condition of a CO/CO_(2)ratio of 1:1,a reduction temperature of 800℃,and a reduction roasting time of 60 min,a nickel-iron concentrate with a nickel grade of 2.10%and an iron content of 45.96%was produced from a raw material with a nickel grade of 1.45%,achieving a remarkable nickel recovery rate of 46.26%.XRD and SEM-EDS analysis indicated that nickel in the concentrate mainly exists in the form of[Fe,Ni],while the unrecovered nickel in the tailings is primarily present in the form of[Fe,Ni]and Ni_(2)SiO_(4)in forsterite.This study established a theoretical foundation for further exploration of fluidized reduction roasting technology.
基金Project (50974135) supported by the National Natural Science Foundation of China
文摘To acquire understanding of Ni enrichment from laterite ore,the mineralogy and crystal chemistry of a low grade limonite type nickel laterite ore sample assaying 0.97% Ni from Indonesia were studied using optical microscopy,X-ray diffraction(XRD),scanning electron microscopy(SEM) and electron probe microanalysis(EPMA).According to EPMA results,the mineral includes 80% goethite((Fe,Ni,Al)O(OH)) with 0.87% Ni,15% silicate minerals with lizardite((Mg,Fe,Ni)3Si2O5(OH)) and olivine((Mg,Fe,Ni)2SiO4),and 1.19% Ni,and other minor phases,such as hematite,maghemite,chromite and quartz,and no Ni was detected.The mineralogy of the laterite ore indicates that due to the complicated association of the various phases and the variable distribution of Ni,this refractory laterite ore can not be upgraded by traditional physical beneficiation processes.
基金Project(2014CB643405) supported by the National Basic Research Program of ChinaProjects(51204036,51234009) supported by the National Natural Science Foundation of ChinaProject(BJ201604) supported by the Program for Top Young Talents of Higher Education Institutions of Hebei Province,China
文摘The mineralogical phase transformation of a low-grade nickel laterite ore during pre-roasting process and the extraction of silicon during alkaline leaching process were investigated.The results indicate that the reaction activity of nickel ores is effectively improved by pre-roasting at650°C for2h,because of the transformation of lizardite into magnesium olivine and protoenstatite.When finely ground ore samples(44-61μm)pre-roasted firstly react with sodium hydroxide solution(60g/L)with a solid/liquid ratio of1:5at140°C for120min,the extraction of silicon can reach89.89%,and the other valuable elements of magnesium,iron and nickel are accumulated in the solid residues.The leaching kinetics of nickel laterite ore can be described successfully by the diffusion through the product layer control model.The activation energy is calculated to be11.63kJ/mol and the kinetics equation can be expressed as1-3(1-x)2/3+2(1-x)=13.53×10-2exp[-11.63/(RT)]t.
基金financially supported by the Fundamental Research Funds for the Central Universities of China (No. N120302006)the China Postdoctoral Science Foundation(No. 2013M530939)the Key Programs on Social Development of Liaoning Province, China (No. 2012201011)
文摘Zeolite NaA was successfully prepared from nickel laterite residue for the first time via a fusion-hydrothermal procedure. The structure and morphology of the as-synthesized zeolite NaA were characterized with a range of experimental techniques, such as X-ray diffraction, scanning electronic microscopy, and infrared spectroscopy. It was revealed that the structures of the produced zeolites were dependent on the molar ratios of the reactants and hydrothermal reaction conditions, so the synthesis conditions were optimized to obtain pure zeolite NaA. Adsorption of nitrogen and carbon dioxide on the prepared zeolite NaA was also measured and analyzed. The results showed that zeolite NaA could be prepared with reasonable purity, it had physicochemical properties comparable with zeolite NaA made from other methods, and it had excellent gas adsorption properties, thus demonstrating that zeolite NaA could be prepared from nickel laterite residue.
基金the National Natural Science Foundation of China(No.51234010)the Fundamental Research Funds for Central Universities(No.106112017CDJXY130001)for the financial support provided for this research
文摘The sticking phenomenon between molten slag and refractory is one of the crucial problems when preparing ferronickel from laterite ore using rotary hearth fulnace or rotary kiln processes. This study aims to ameliorate sticking problems by using silicon dioxide (SiO2) to adjust the melting degree of file briquette during reduction roasting. Thermodynamic analysis indicates that the melting temperature of the slag gradually increases with an increase in the SiO2 proportion (SiO2/(SiO2 + A1203 + MgO) mass ratio). Experimental validations also prove that the briquette retains its original shape when the SiO2 proportion is greater than 75wt%, and sticking problems axe avoided during reduction. A ferronickel product with 8.33wt% Ni and 84.71wt% Fe was prepared via reductive roasting at 1500~C for 90 min with a SiO2 proportion of 75wt% and a C/O molar ratio of 1.0 followed by dry magnetic separation; the corresponding recoveries of Ni and Fe reached 75.70% and 77.97%, respectively. The micro stxucture and phase txmlsformation of reduced briquette reveals that the aggregation and growth of ferroinckel particles were not significantly affected after adding SiO2 to the reduction process.
文摘Nickel was recovered from nickel laterite using a sulfation-roasting-leaching process and the effects of operation parameters in- cluding acid addition, roasting temperature, and roasting time on nickel extraction and iron dissolution were investigated using response sur- face methodology (RSM). Two second-order polynomial models of high significance were presented to show the relationship between the responses and the variables. The analysis of variance (ANOVA) showed high coefficients of determination (R2) of 0.894 and 0.980 for the two models, respectively. Optimum areas of 〉-80% Ni extraction and 〈5% Fe dissolution were obtained by the overlaid contours. Verification experiments in the optimum areas were conducted and the results indicate a close agreement with the predicted values obtained from the models.
基金Project(2007CB613607)supported by National Basic Research Program of China
文摘The chloridizing segregation and magnetic separation of low-grade nickel laterites from Yunnan province of China was investigated.The nickel laterites were characterized by microscopic investigations,using X-ray diffractometry(XRD)and energy dispersive spectrometry(EDS)techniques.The pellets,which were prepared with magnesium chloride and coke as chloride agent and reductant respectively,were heated to a high temperature,and the pellets after cooling were crushed for magnetic separation.A series of experiments were conducted to examine the effect of chlorinating agent dosage,reductant dosage,chloridizing temperature and chloridizing time on enrichment grade of Ni and Co.The results indicate that the four factors have significant effects on the extractions of Ni and Co.The optimum conditions are as follows:the amounts of magnesium chloride and coke are 6%and 2%,respectively,chloridizing temperature is 1 253 K,and chloridizing time is 90 min.Under the conditions,extractions of Ni and Co reach 91.5%and 82.3%,respectively.
文摘The extraction and separation of zinc, manganese, cobalt and nickel from nickel laterite bacteria leach liquor were carried out using sodium salts of TOPS-99 and Cyanex 272 in kerosene. The unwanted metal ions were removed by precipitation method and solvent extraction was used to extract/separate Zn, Mn, Co and Ni. The nickel laterite leach liquor which was obtained from bioleaching of chromite overburden samples contained 3.72 g/L Fe, 2.08 g/L Al, 0.44 g/L Ni, 0.02 g/L Co, 0.13 g/L Mn, 0.14 g/L Zn and 0.22 g/L Cr. From this leach liquor, 100% Fe, 96.98% Al and 70.42% Cr were removed by precipitation with Ca CO_3 at pH 4.4 followed by precipitation of remaining Al and Cr with 50% ammonia at p H 5.4. After precipitation, the extraction of Zn from the Fe, Al and Cr free leach liquor was carried out with 0.1 mol/L TOPS-99 followed by Mn extraction with 0.04 mol/L Na TOPS-99. The yields of Zn and Mn were 97.77% and 95.63%, respectively. After Mn extraction, cobalt was removed from the leach liquor using 0.0125 mol/L Na Cyanex 272 and finally nickel extraction was carried out using 0.12 mol/L Na TOPS-99 with 99.84% yield. The stripping of loaded organic(LO) phases were achieved with dilute H_2SO_4.
文摘Due to the complex chemical composition of nickel ores, the requests for the decrease of production costs, and the increase of nickel extraction in the existing depletion of high-grade sulfide ores around the world, computer modeling of nickel ore leaching process be- came a need and a challenge. In this paper, the design of experiments (DOE) theory was used to determine the optimal experimental design plan matrix based on the D optimality criterion. In the high-pressure sulfuric acid leaching (HPSAL) process for nickel laterite in "Rudjinci" ore in Serbia, the temperature, the sulfuric acid to ore ratio, the stirring speed, and the leaching time as the predictor variables, and the degree of nickel extraction as the response have been considered. To model the process, the multiple linear regression (MLR) and response surface method (RSM), together with the two-level and four-factor full factorial central composite design (CCD) plan, were used. The proposed re- gression models have not been proven adequate. Therefore, the artificial neural network (ANN) approach with the same experimental plan was used in order to reduce operational costs, give a better modeling accuracy, and provide a more successful process optimization. The model is based on the multi-layer neural networks with the back-propagation (BP) learning algorithm and the bipolar sigmoid activation function.
基金financially supported by the National Natural Science Foundation of China(Nos.U1302274 and 51274044)
文摘The preparation of ferronickel alloy from the nickel laterite ore with low Co and high MgO contents was studied by using a pre-reduction-smelting method. The effects of reduction time, calcination temperature, quantity of reductant and calcium oxide (CaO), and pellet diameter on the reduction ratio of Fe and on the pellet strength were investigated. The results show that, for a roasting temperature > 800 A degrees C, a roasting time > 30 min, 1.5wt% added anthracite coal, 5wt% added CaO, and a pellet size of similar to 10 mm, the reduction ratio of Fe exceeds 70% and the compressive strength of the pellets exceeds 10 kg per pellet. Reduction smelting experiments were performed by varying the smelting time, temperature, quantity of reductant and CaO, and reduction ratio of Fe in the pellets. Optimal conditions for the reduction smelting process are as follows: smelting time, 30-45 min; smelting temperature, 1550A degrees C; quantity of reductant, 4wt%-5wt%; and quantity of CaO, 5wt%; leading to an Fe reduction ratio of 75% in the pellets. In addition, the mineral composition of the raw ore and that during the reduction process were investigated by process mineralogy.
基金Project(2007CB613603)supported by the National Basic Research Program of China
文摘The leaching of magnesium from desiliconization slag of nickel laterite ores by carbonation process was studied.The influence of various parameters was investigated to optimize the conditions and determine the kinetics of the reaction.The results show that with increasing stirring speed,liquid-to-solid ratio and reaction time,and decreasing temperature,the leaching rate of magnesium enhances.The leaching process of the desiliconization slag in the range of 288-298 K is controlled by the surface chemical reaction model.The apparent activation energy is-20.45 kJ/mol,and the kinetics model is obtained.
基金Project(50774020)supported by the National Natural Science Foundation of China
文摘The application of microwave technique in the hydrometallurgy of nickel laterite ores was described.The mixture of nickel laterite ores and sulfuric acid was pre-treated by microwave irradiation.The dissolving of nickel was conducted in hot water at the atmospheric pressure.The effects of factors,such as microwave power,microwave irradiation time,and sulfuric acid dosage, were investigated.In microwave field,the migration of ionic species and/or rotation of dipolar species promote the liquid?solid reaction process due to the increased contact area of reactants and leaching reaction rate constant.Thanks to the strengthening action of microwave,the microwave-assisted leaching process has its advantages,such as higher extracting rate than conventional atmospheric leaching,and no need for high-pressure operation as high pressure acid leaching(HPAL).The ferric iron in leaching solution could be effectively removed by sodium jarosite process with a little loss of nickel in the jarosite precipitate.
基金financially supported by the National Science Foundation for Distinguished Young Scholars of China(No.51125018)the National Key Technologies R&D Program(2011BAC06B07)+2 种基金the Key Research Program of the Chinese Academy of Sciences(No.KGZD-EW-201-2)the National Natural Science Foundation of China(No.51204153)the Program of Jiangsu Collaborative Innovation Center for Ecological Building Materials and Environmental Protection Equipments(No.YCXT201610)
文摘A chemical precipitation-thermal decomposition method was developed to synthesize Co3O4 nanoparticles using cobalt liquor obtained from the atmospheric pressure acid leaching process of nickel laterite ores. The effects of the precursor reaction temperature, the concentration of Co2+, and the calcination temperature on the specific surface area, morphology, and the electrochemical behavior of the ob- tained Co304 particles were investigated. The precursor basic cobaltous carbonate and cobaltosic oxide products were characterized and ana- lyzed by Fourier transform infrared spectroscopy, thermogravimetric differential thermal analysis, X-ray diffraction, field-emission scanning electron microscopy, specific surface area analysis, and electrochemical analysis. The results indicate that the specific surface area of the Co3O4particles with a diameter of 30 rim, which were obtained under the optimum conditions of a precursor reaction temperature of 30℃, 0.25 mol/L Co2+, and a calcination temperature of 350℃, was 48.89 m2/g. Electrodes fabricated using Co3O4 nanoparticles exhibited good electrochemical properties, with a specific capacitance of 216.3 F/g at a scan rate of 100 mV/s.
基金This research was jointly supported by the China Geological Survey Project(DD20211404)the Natural Science Foundation of Inner Mongolia Autonomous Region(2019LH05028).
文摘With the development of the new energy industry and the depletion of nickel sulfide ore resources,laterite nickel ore has become the main source of primary nickel,and nickel for power batteries has become a new growth point in consumption.This paper systematically summarizes the processes,parameters,products,recovery rates,environmental indicators,costs,advantages,disadvantages and the latest research progress of mainstream nickel extraction processes from laterite nickel ore.It also provides a comparative analysis of the environmental impact and economic efficiency of different nickel extraction processes.It is found that the current nickel extraction processes from laterite nickel ore globally for commercial production mainly include the RKEF process for producing ferronickel and the HPAL process for producing intermediate products.The former accounts for about 80%of laterite nickel ore production.Compared to each other,the investment cost per ton of nickel metal production capacity for the RKEF is about 43000$,with an operational cost of about 16000$per ton of nickel metal and a total nickel recovery rate of 77%–90%.Its products are mainly used in stainless steels.For the HPAL process,the investment cost per ton of nickel metal production capacity is about 56000$,with an operational cost of about 15000$per ton of nickel metal and a total nickel recovery rate of 83%–90%.Its products are mainly used in power batteries.The significant differences between the two lies in energy consumption and carbon emissions,with the RKEF being 2.18 and 2.37 times that of the HPAL,respectively.Although the use of clean energy can greatly reduce the operational cost and environmental impact of RKEF,if RKEF is converted to producing high Ni matte,its economic and environmental performance still cannot match that of the HPAL and oxygen-enriched side-blown processes.Therefore,it can be inferred that with the increasing demand for nickel in power batteries,HPAL and oxygen-enriched side blowing processes will play a greater role in laterite nickel extraction.
基金supported by the Youth Natural Science Foundation of China(No.51904347)the National Natural Science Foundation of China(No.51574281)Innovation-driven Project of Guangxi Zhuang Autonomous Region(No.AA18242003)。
文摘Low-grade saprolite nickel laterite,characterized by complicated minerals composition and fine-grained and complex dissemination,was commonly treated with a low recovery efficiency of Ni and Fe by conventional methods.Hence,an improved direct reduction and magnetic separation process was proposed.Meanwhile,the mechanisms on the enhanced growth of the Ni-Fe particles and the phase transformation in the nickel laterite pellets were explored.The low-nickel concentrates as a nucleating agent can obviously decrease the activation energy for growth of Ni-Fe alloy particles during the improved direct reduction process from 197.10 to 154.81 kJ/mol when the low-nickel concentrates were added from 0 to 20%.Hence,it is able to decrease nucleation barrier,induce the growth of Fe-Ni alloy particles and increase their average size.As a result,the size of Ni-Fe particles in the pellets from less than 10 lm grew to more than 20 lm,which is beneficial for the full liberation and recovery of Ni and Fe in subsequent magnetic separation process.Therefore,the preferable Ni-Fe alloy concentrates with 6.44%Ni and 82.48%Fe can be prepared with corresponding recovery rates of 96.90%and 95.92%,respectively,when adding 20%low-nickel concentrates.
基金supports from the Youth Natural Science Foundation of China(No.51904347)Major Project of Master Alloy Manufacture for Heat Resistant Stainless Steel Production(No.AA18242003)funded by the Provincial Government of Guangxi Zhuang Autonomous District are sincerely acknowledged.
文摘Strengthening limonitic nickel laterite sintering and reducing CO_(2) emission were performed by the application of multiforce fields including external thermodynamic and pressure fields.Sinter pot tests of limonitic nickel laterite were carried out,and the relevant industrial production was briefed.The chemistry and mineralogy of product sinter and the thermodynamic and kinetic conditions during sintering were analyzed to reveal the relevant mechanism.The results indicate that sintering performance of limonitic nickel laterite in the new sintering process with multi-force fields is significantly improved with tumble index and productivity increased by 24.11%and 18.56%,respectively,and solid fuel rate reduced by 23.21%,compared with those in traditional sintering process.In this case,greenhouse and pollutant gas emissions are greatly reduced,and metallurgical performances of product sinter are excellent.The industrial production has been successfully conducted,indicating a bright application prospect.Mechanism analysis shows that the great improvement of thermodynamic and kinetic conditions during sintering and the densification of loose sinter can be achieved via the application of multi-force fields.Sinter microstructure is transformed from large thin-wall pores to small thin-wall pores or medium thick-wall pores with the dramatic reduction of sinter porosity and more formation of silico-ferrite of calcium and alumina(SFCA).Meanwhile,the homogenization of mineral compositions is achieved,and much denser interlocking texture between hercynite and SFCA is formed.The application of multi-force fields contributes to the substantial improvement of sintering performance of limonitic nickel laterite and CO_(2) emission reduction.
文摘Stainless steel crude alloy recovery from direct smelting of low-grade chromite, nickel laterite and manganese ores was investigated. The mixed low-grade ores were directly smelted in an elevator furnace at smelting temperatures ranging from 1550 to 1600 ℃. Smelting experiments were conducted in a laboratory elevator furnace equipped with 8 U-shaped high- quality molybdenum disilicide heating elements. A low-grade coal was used as the reductant. Experimental results showed that the recovery of Fe, Cr, Ni, Mn and Si within the alloy increased from 34.22, 60.27, 57.14, 25.42 and 13.02% to 69.91, 99.26, 86.02, 60.8 and 34.21%, respectively, when the temperature was increased from 1550 to 1600 ℃. There was a general increase in the total recoveries of Fe, Cr, and Ni in the alloy with CaO addition increasing from 0.4 g up to 1.2 g. However, the recoveries of Mn and Si vividly decreased as the CaO contents were increased. In general, the recoveries of the metal contents of the crude alloy increase with the increase in the amount of manganese ore. Compared to the recoveries of Fe, Cr, and Ni when CaO was added, the recoveries of Fe, Cr and Ni were lower when manganese ore was used as an additive.
基金support from the Major Project of Master Alloy Manufacture for Heat Resistant Stainless Steel Production (No.AA18242003)funded by the Provincial Government of Guangxi Zhuang Autonomous District,China,issincerely acknowledged。
文摘To achieve the more extensive utilization of limonitic nickel laterite,the difference of sintering performance of different types of limonitic nickel laterite including high-gangue and low-gangue nickel ores was investigated by sinter pot tests and relevant mechanism analyses such as thermodynamic analysis and the chemistry and mineralogy of product sinter.With the type of limonitic nickel laterite transformed from high-gangue to low-gangue nickel ore,tumble index and productivity are improved from 45.87%and 0.97 t m^(-2) h^(-1) to 50.16%and 1.05 t m^(-2) h^(-1),respectively,and solid fuel rate is reduced from 140.52 to 131.13 kg/t,indicating that the low-gangue nickel ore possesses relatively better sintering performance.This is mainly due to the fact that the much lower contents of MgO and Al2O3 improve the formation ability and fluidity of liquid phase,which eventually contributes to the formation of relatively tighter sinter microstructure with the lower sinter porosity,more silico-ferrite of calcium and alumina amount and better bonding of hercynite by liquid phases.In addition,the metallurgical performance and nickel content of product sinter would not be reduced as different types of limonitic nickel laterite are blended for sintering.On this basis,it is entirely feasible to more widely utilize limonitic nickel laterite and simultaneously obtain much better-quality Ni-containing product sinter via effective sintering strengthening technologies.
基金Project of Master Alloy Manufacture for Heat Resistant Stainiess Steel Production(No.AA18242003)funded by the Provincial Govermment of Guangxi Zhuang Autonomous District is sincerely acknowledged。
文摘In consideration of the abundant moisture of limonitic nickel laterite mined,it is essential to determine whether the selfpossessed moisture of limonitic nickel laterite after pre-dried is appropriate for sintering.Thus,based on the characterization of limonitic nickel laterite,the influence of its self-possessed moisture on sintering performance was expounded by sinter pot tests and the relevant mechanism was revealed by the systematical analyses of the granulation properties of sinter mixture,thermodynamic conditions during sintering and mineralogy of product sinter.The results indicate that the selfpossessed moisture of limonitic nickel laterite indeed has significant infuence on its sintering performance.At the optimum self-possessed moisture of 21 mass%,sinter indices are relatively better with tumble index,productivity and solid fuel rate of 48.87%,1.04 t m^(-2) h^(-1)and 136.52 kg t^(-1),respectively,due to the superior granulation properties of sinter mixture and thermodynamic conditions during sintering,relatively large amount of silico-ferrite of calcium and alumina and tighter sinter microstructure.However,sintering performance of limonitic nickel laterite is still much poorer than that of ordinary iron ores.It is feasible to strengthen limonitic nickel laterite sintering by inhibiting the over-fast sintering speed and improving the thermodynamic conditions during sintering.
基金Projects(51904058,51734005)supported by the National Natural Science Foundation of ChinaProject(2018YFC1901901902)supported by the National Key Research and Development Program of China
文摘The process of deep reduction and magnetic separation was proposed to enrich nickel and iron from laterite nickel ores.Results show that nickel-iron concentrates with nickel grade of 6.96%,nickel recovery of 94.06%,iron grade of 34.74%,and iron recovery of 80.44% could be obtained after magnetic separation under the conditions of reduction temperature of 1275℃,reduction time of 50 min,slag basicity of 1.0,carbon-containing coefficient of 2.5,and magnetic field strength of 72 kA/m.Reduction temperature and time affected the possibility of deep reduction and reaction progress.Slag basicity affected the composition of slag in burden and the spilling and enriching rate of nickel-iron from a matrix to form nickel-iron particles.Nickel-iron particles were generated,aggregated,and grew gradually in the reduction process.Nickel-iron particles can be effectively separated from gangue minerals by magnetic separation.