期刊文献+
共找到21,954篇文章
< 1 2 250 >
每页显示 20 50 100
Achieving High Strength and Tensile Ductility in Pure Nickel by Cryorolling with Subsequent Low-Temperature Short-Time Annealing
1
作者 Zhide Li Hao Gu +2 位作者 Kaiguang Luo Charlie Kong Hailiang Yu 《Engineering》 SCIE EI CAS CSCD 2024年第2期190-203,共14页
Ultra fine-grained pure metals and their alloys have high strength and low ductility.In this study,cryorolling under different strains followed by low-temperature short-time annealing was used to fabricate pure nickel... Ultra fine-grained pure metals and their alloys have high strength and low ductility.In this study,cryorolling under different strains followed by low-temperature short-time annealing was used to fabricate pure nickel sheets combining high strength with good ductility.The results show that,for different cryorolling strains,the uniform elongation was greatly increased without sacrificing the strength after annealing.A yield strength of 607 MPa and a uniform elongation of 11.7%were obtained after annealing at a small cryorolling strain(ε=0.22),while annealing at a large cryorolling strain(ε=1.6)resulted in a yield strength of 990 MPa and a uniform elongation of 6.4%.X-ray diffraction(XRD),transmission electron microscopy(TEM),scanning electron microscopy(SEM),and electron backscattered diffraction(EBSD)were used to characterize the microstructure of the specimens and showed that the high strength could be attributed to strain hardening during cryorolling,with an additional contribution from grain refinement and the formation of dislocation walls.The high ductility could be attributed to annealing twins and micro-shear bands during stretching,which improved the strain hardening capacity.The results show that the synergistic effect of strength and ductility can be regulated through low-temperature short-time annealing with different cryorolling strains,which provides a new reference for the design of future thermo-mechanical processes. 展开更多
关键词 CRYOROLLING ANNEALING nickel Strain hardening DUCTILITY
下载PDF
Electrokinetic-mechanism of water and furfural oxidation on pulsed laser-interlaced Cu_(2)O and CoO on nickel foam
2
作者 Yewon Oh Jayaraman Theerthagiri +3 位作者 M.L.Aruna Kumari Ahreum Min Cheol Joo Moon Myong Yong Choi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期145-154,共10页
The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and... The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and Cu_(2)O/Ni O/NF electrodes via in situ pulsed laser irradiation in liquids(PLIL)for the bifunctional electrocatalysis of oxygen evolution reaction(OER)and furfural oxidation reaction(FOR),respectively.Simultaneous oxidation of NF surface to NiO and deposition of CoO and/or Cu_(2)O on NF during PLIL offer distinct advantages for enhancing both the OER and FOR.CoO/NiO/NF electrocatalyst provides a consistently low overpotential of~359 m V(OER)at 10 m A/cm^(2),achieving the maximum FA yield(~16.37 m M)with 61.5%selectivity,79.5%carbon balance,and a remarkable Faradaic efficiency of~90.1%during 2 h of FOR at 1.43 V(vs.reversible hydrogen electrode).Mechanistic pathway via in situ electrochemical-Raman spectroscopy on CoO/NiO/NF reveals the involvement of phase transition intermediates(NiOOH and CoOOH)as surface-active centers during electrochemical oxidation.The carbonyl carbon in FF is attacked by hydroxyl groups to form unstable hydrates that subsequently undergo further oxidation to yield FA products.This method holds promise for large-scale applications,enabling simultaneous production of renewable building materials and fuel. 展开更多
关键词 Pulsed laser irradiation in liquids Water and furfural oxidation In situ Raman spectroscopy CoO/NiO/nickel foam Cu_(2)O/Nio/nickel foam 2-furoic acid
下载PDF
Accurate estimation of Li/Ni mixing degree of lithium nickel oxide cathode materials
3
作者 陈鹏浩 徐磊 +1 位作者 禹习谦 李泓 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期631-635,共5页
Li/Ni mixing negatively influences the discharge capacity of lithium nickel oxide and high-nickel ternary cathode materials.However,accurately measuring the Li/Ni mixing degree is difficult due to the preferred orient... Li/Ni mixing negatively influences the discharge capacity of lithium nickel oxide and high-nickel ternary cathode materials.However,accurately measuring the Li/Ni mixing degree is difficult due to the preferred orientation of labbased XRD measurements using Bragg–Brentano geometry.Here,we find that employing spherical harmonics in Rietveld refinement to eliminate the preferred orientation can significantly decrease the measurement error of the Li/Ni mixing ratio.The Li/Ni mixing ratio obtained from Rietveld refinement with spherical harmonics shows a strong correlation with discharge capacity,which means the electrochemical capacity of lithium nickel oxide and high-nickel ternary cathode can be estimated by the Li/Ni mixing degree.Our findings provide a simple and accurate method to estimate the Li/Ni mixing degree,which is valuable to the structural analysis and screening of the synthesis conditions of lithium nickel oxide and high-nickel ternary cathode materials. 展开更多
关键词 lithium nickel oxide high-nickel ternary cathode Li/Ni mixing spherical harmonics function discharge capacity
下载PDF
Engineering of Self-Supported Electrocatalysts on a Three-Dimensional Nickel Foam Platform for Efficient Water Electrolysis
4
作者 Ceneng Chen Xian Wang +6 位作者 Zijun Huang Jiahui Mo Xiaoyan Zhang Chao Peng Mohamed Khairy Junjie Ge Zhi Long 《Transactions of Tianjin University》 EI CAS 2024年第2期103-116,共14页
Economical water electrolysis requires highly active non-noble electrocatalysts to overcome the sluggish kinetics of the two half-cell reactions,oxygen evolution reaction,and hydrogen evolution reaction.Although inten... Economical water electrolysis requires highly active non-noble electrocatalysts to overcome the sluggish kinetics of the two half-cell reactions,oxygen evolution reaction,and hydrogen evolution reaction.Although intensive efforts have been committed to achieve a hydrogen economy,the expensive noble metal-based catalysts remain under consideration.Therefore,the engineering of self-supported electrocatalysts prepared using a direct growth strategy on three-dimensional(3D)nickel foam(NF)as a conductive substrate has garnered significant interest.This is due to the large active surface area and 3D porous network offered by these electrocatalysts,which can enhance the synergistic eff ect between the catalyst and the substrate,as well as improve electrocatalytic performance.Hydrothermal-assisted growth,microwave heating,electrodeposition,and other physical methods(i.e.,chemical vapor deposition and plasma treatment)have been applied to NF to fabricate competitive electrocatalysts with low overpotential and high stability.In this review,recent advancements in the development of self-supported electrocatalysts on 3D NF are described.Finally,we provide future perspectives of self-supported electrode platforms in electrochemical water splitting. 展开更多
关键词 nickel foam Water splitting Surface modification Hydrothermal method Microwave-assisted method ELECTRODEPOSITION Chemical vapor deposition Plasma treatment
下载PDF
Solubility of iron(Ⅲ) and nickel(Ⅱ) acetylacetonates in supercritical carbon dioxide
5
作者 Haixin Sun Jianlei Qi +4 位作者 Jianfei Sun Lin Li Kunpeng Yu Jintao Wu Jianzhong Yin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期29-34,共6页
As a common precursor for supercritical CO_(2)(scCO_(2))deposition techniques,solubility data of organometallic complexes in scCO_(2)is crucial for the preparation of nanocomposites.Recently,metal acetylacetonates hav... As a common precursor for supercritical CO_(2)(scCO_(2))deposition techniques,solubility data of organometallic complexes in scCO_(2)is crucial for the preparation of nanocomposites.Recently,metal acetylacetonates have shown great potential for the preparation of single-atom catalytic materials.In this study,the solubilities of iron(Ⅲ)acetylacetonate(Fe(acac)3)and nickel(Ⅱ)acetylacetonate(Ni(acac)2)were measured at the temperature from 313.15 to 333.15 K and in the pressure range of 9.5–25.2 MPa to accumulate new solubility data.Solubility was measured using a static weight loss method.The semi-empirical models proposed by Chrastil and Sung et al.were used to correlate the solubility data of Fe(acac)3 and Ni(acac)2.The equations obtained can be used to predict the solubility of the same system in the experimental range. 展开更多
关键词 Iron(III)acetylacetonate nickel(II)acetylacetonate Supercritical carbon dioxide Solubility measurement Correlation model Phase equilibrium
下载PDF
Indirect Electroanalysis of 3-Methyl-4-Nitrophenol in Water Using Carbon Fiber Microelectrode Modified with Nickel Tetrasulfonated Phthalocyanine Complex
6
作者 Yibor Fabrice Roland Bako Serge Foukmeniok Mbokou +2 位作者 Boukaré Kaboré Issa Tapsoba Maxime Pontié 《Materials Sciences and Applications》 2024年第2期25-35,共11页
Electrochemical detection of 3-methyl-4-nitrophenol (MNP) in direct phenol oxidation occurs at high potentials and generally leads to progressive passivation of the electrochemical sensor. This study describes the use... Electrochemical detection of 3-methyl-4-nitrophenol (MNP) in direct phenol oxidation occurs at high potentials and generally leads to progressive passivation of the electrochemical sensor. This study describes the use of a carbon fiber microelectrode modified with a tetrasulfonated nickel phthalocyanine complex for the detection of MNP at a lower potential than that of direct phenol oxidation. The MNP voltammogram showed the presence of an anodic peak at -0.11 V vs SCE, corresponding to the oxidation of the hydroxylamine group generated after the reduction of the nitro group. The effect of buffer pH on the peak current and SWV parameters such as frequency, scan increment, and pulse amplitude were studied and optimized to have better electrochemical response of the proposed sensor. With these optimal parameters, the calibration curve shows that the peak current varied linearly as a function of MNP concentration, leading to a limit of detection (LoD) of 1.1 μg/L. These results show an appreciable sensitivity of the sensor for detecting the MNP at relatively low potentials, making it possible to avoid passivation phenomena. 展开更多
关键词 3-Methyl-4-Nitrophenol Carbon Fiber Microelectrode nickel Tetrasulfonated Phthalocyanine Indirect Electroanalysis Square Wave Voltammetry
下载PDF
Research Progress of Nickel Iron Bimetallic Series Electrocatalytic Materials
7
作者 Yan Qiu Wenjing Ma 《Expert Review of Chinese Chemical》 2024年第2期23-26,共4页
Hydrogen energy has become one of the recognized clean energy sources worldwide due to its advantages such as low cost,renewable energy,and green environmental protec-tion.Electrolytic water is currently one of the mo... Hydrogen energy has become one of the recognized clean energy sources worldwide due to its advantages such as low cost,renewable energy,and green environmental protec-tion.Electrolytic water is currently one of the most promising solutions for providing hydrogen fuel.Nickel iron bimetallic electrocatalysts have abundant sources,low cost,clean and pollution-free properties,and strong catalytic performance,This article mainly reviews the development and research of bimetallic nickel iron oxides and nickel iron alloys in recent years,and explores their synthesis methods,properties,and stability in depth. 展开更多
关键词 ELECTROCHEMISTRY bimetallic nickel ferroelectric catalyst hydrogen evolution reaction oxygen evolution reaction
下载PDF
Synthesis of Y_2O_3 Nano-Powder from Yttrium Oxalate under Ambient Temperature 被引量:9
8
作者 李玲 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第3期358-361,共4页
High purity Y_2O_3 nano-powders was synthesized directly from solution ofindustrial YCl_3 by method of oxalate precipitation through super-micro-reactors made by complexnon-ionic surfactant. The purity and diameter of... High purity Y_2O_3 nano-powders was synthesized directly from solution ofindustrial YCl_3 by method of oxalate precipitation through super-micro-reactors made by complexnon-ionic surfactant. The purity and diameter of Y_2O_3 particles were controlled by such processingparameters as concentration of YCl_3 and oxalic acid and complex non-ionic surfactant etc. TEMphotomicrographs show that Y_2O_3 particles are spherical in shape, with an average diameter of lessthan 30 nm. Test results certify that the purity and particle diameter as well as the dispersion ofY_2O_3 nano-powder depend on the concentrations of YCl_3, oxalic acid and complex non-ionicsurfactant. The optimum ranges of the concentrations for YCl_3 and complex non-ionic surfactant whenthe diameter of Y_2O_3 particles is smaller than 100 nm are 0.43 ~1.4 mol ? L^(-1) and0.031~0.112 mol·L^(-1) respectively, while the mass fraction range of oxalic acid is 10% ~18% .The purity of Y_2O_3 nano-powder tested by ICP-AES analysis is 99.99% . 展开更多
关键词 oxalate precipitation method complex non-ionic surfactant super-micro-reactor Y_2O_3 nano-powder synthesis rare earths
下载PDF
Progress on grain growth dynamics in sintering of nano-powders 被引量:2
9
作者 LIU Chunjing WANG Xin JIANG Yanfei WANG Yongming HAO Shunli 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期471-475,共5页
Nanostructured materials, characterized by an ultrafine grain size, have stimulated much research interest by virtue of their unusual mechanical, electrical, optical, and magnetic properties. In this paper, the sinter... Nanostructured materials, characterized by an ultrafine grain size, have stimulated much research interest by virtue of their unusual mechanical, electrical, optical, and magnetic properties. In this paper, the sintering process of nano-powders were reviewed, to which sintering of the traditional materials compared. The microstructural development, i.e., grain growth and densification during sintering as well as the mechanism of crystal surface diffusion and boundary migration were analyzed, and the dynamic models on sintering process were summarized by the relationship of grain growth and pores size, interface diffusion, densification rate, and sintering temperature. Finally, the research tendency of this major on the basis of above models was discussed. 展开更多
关键词 nano-powderS SINTERING GRAIN BOUNDARY GRAIN growth DYNAMICS
下载PDF
ITO nano-powders prepared by microwave-assisted co-precipitation in aqueous phase 被引量:2
10
作者 朱协彬 姜涛 +1 位作者 邱冠周 黄伯云 《中国有色金属学会会刊:英文版》 CSCD 2009年第S3期752-756,共5页
By using microwave-assisted co-precipitation in aqueous phase, adding surface activation agent PEG-6000 into the mixture of InCl3 solution and SnCl4 solution, and dropping the ammonia solution with the density (volume... By using microwave-assisted co-precipitation in aqueous phase, adding surface activation agent PEG-6000 into the mixture of InCl3 solution and SnCl4 solution, and dropping the ammonia solution with the density (volume ratio) of 1-0 to 1-4, ITO precursor was prepared at different reaction system temperatures of 35 ℃-85 ℃, then ITO nano-powder was obtained after it was calcinated at 800 ℃ for 1 h. The morphology of ITO nano-powder was characterized by SEM and its electrical conductivity was determined by conductivity meter. The effects of different temperatures and ammonia concentration in microwave-assisted reaction system on its morphology and electric conductivity were discussed. The experimental results indicate that with the dilution of the ammonia solution or the rise of reacting system temperature, the morphology of ITO particles is transformed from spherical to rod-like one with the decline of its electric conductivity. And the electric conductivity of ITO nano-powders with spherical morphology is higher than that of ITO nano-powders with rod-like morphology. 展开更多
关键词 ITO nano-powder surface activation agent PEG-6000 microwave assistance CO-PRECIPITATION aqueous phase
下载PDF
Effects of Yb ^(3+)-Doping on Phase Transformation and Photocatalytic Activities of TiO_2 Nano-Powders
11
作者 姜洪泉 王鹏 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第S1期58-64,共7页
Yb 3+-doped TiO_2 composite nano-particles were prepared by the acid-catalyzed sol-gel method using Ti(OC_4H_9)_4 and Yb(NO_3)_3 as precursors. The effects of the amount of Yb 3+ doping and calcination temperature on ... Yb 3+-doped TiO_2 composite nano-particles were prepared by the acid-catalyzed sol-gel method using Ti(OC_4H_9)_4 and Yb(NO_3)_3 as precursors. The effects of the amount of Yb 3+ doping and calcination temperature on the phase transformation, crystallite size, surface texture of the nanopowders were investigated by XRD and BET specific surface area. Their photocatalytic activities were evaluated using the photocatalytic degradation of methylene blue in aqueous solution as a probe reaction. At the interface, titanium ions substitute for ytterbium ions in the lattice of Yb_2O_3 to form Ti-O-Yb bonds, which cause distortion and inhibit the anatase to rutile phase transformation in TiO_2. The results indicate that Yb 3+-doping can enhance the photocatalytic activity of TiO_2 nano-powders as compared with pure TiO_2. 0.125%(mass fraction) Yb 3+ doped TiO_2 nano-powders calcined at 600 ℃ for 2 h show the highest photocatalytic activity. The increase in photoactivity is due to the effects of the factors such as crystal phase, crystallite size, surface chemical property, surface density of OH groups, and surface texture properties of the TiO_2 nano-powders. 展开更多
关键词 TITANIA Yb 3+-doping nano-powderS phase transformation photocatalytic activity
下载PDF
Influence of current injection ways on efficiency and size of powders in preparation of nano-powders with electrical explosion
12
作者 张爱华 吴龙 +2 位作者 杨富龙 周爱武 朱亮 《China Welding》 EI CAS 2014年第1期51-58,共8页
Wire electrical explosion may result in the existence of micro-sized large particles in powders while current injection ways may influence the size and content of micro-sized large particles. Therefore, two kinds of e... Wire electrical explosion may result in the existence of micro-sized large particles in powders while current injection ways may influence the size and content of micro-sized large particles. Therefore, two kinds of electrical explosion devices with different electrodes by gas discharge were designed in this paper. The pole-board electrodes and the cone electrodes were used respectively for studying copper wire electrical explosion process. The current and voltage data were measured with the Rogowski coil and high voltage probe. The results show that the pulverizing process of electrical explosion is more efficient when the wire electrode current density injected into the cone electrodes is approximately twice as much as the pole-board electrodes. The content of micro-sized large particles is the least among the products of the electrical explosion, when the total deposition energy of the wire prior to vaporization stage is 2. 5 times larger than that of the theoretical value of the completed vaporization. 展开更多
关键词 nano-powderS wire electrical explosion gas discharge energy density
下载PDF
In situ formed ultrafine metallic Ni from nickel(Ⅱ) acetylacetonate precursor to realize an exceptional hydrogen storage performance of MgH_(2)-Ni-EG nanocomposite 被引量:1
13
作者 Shaoyang Shen Liuzhang Ouyang +3 位作者 Jiangwen Liu Hui Wang Xu-Sheng Yang Min Zhu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第9期3174-3185,共12页
It has been well known that doping nano-scale catalysts can significantly improve both the kinetics and reversible hydrogen storage capacity of MgH_(2) . However, so far it is still a challenge to directly synthesize ... It has been well known that doping nano-scale catalysts can significantly improve both the kinetics and reversible hydrogen storage capacity of MgH_(2) . However, so far it is still a challenge to directly synthesize ultrafine catalysts(e.g., < 5 nm), mainly because of the complicated chemical reaction processes. Here, a facile one-step high-energy ball milling process is developed to in situ form ultrafine Ni nanoparticles from the nickel acetylacetonate precursor in the MgH_(2) matrix. With the combined action of ultrafine metallic Ni and expanded graphite(EG), the formed MgH_(2)-Ni-EG nanocomposite with the optimized doping amounts of Ni and EG can still release 7.03 wt.% H_(2) within 8.5 min at 300 ℃ after 10 cycles. At a temperature close to room temperature(50 ℃), it can also absorb 2.42 wt.% H_(2) within 1 h. It can be confirmed from the microstructural characterization analysis that the in situ formed ultrafine metallic Ni is transformed into Mg_(2)Ni/Mg_(2)NiH_4 in the subsequent hydrogen absorption and desorption cycles. It is calculated that the dehydrogenation activation energy of the MgH_(2)-Ni-EG nanocomposite is also reduced obviously in comparison with the pure MgH_(2) . Our work provides a methodology to significantly improve the hydrogen storage performance of MgH_(2) by combining the in situ formed and uniformly dispersed ultrafine metallic catalyst from the precursor and EG. 展开更多
关键词 Hydrogen storage Magnesium hydride nickel precursor Size effect Expanded graphite
下载PDF
Nickel single atom overcoordinated active sites to accelerate the electrochemical reaction kinetics for Li-S cathode 被引量:2
14
作者 Juan Zhu Xinyue Wang +13 位作者 Tian Ke Mingji Jia Biyu Jin Yuanyuan Li Qiwei Yang Lanhui Ren Yongyuan Ren Dangguo Cheng Jianguo Lu Xiang Gao Qinggang He Yang Hou Xiaoli Zhan Qinghua Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期203-210,I0006,共9页
Lithium-sulfur(Li-S)batteries with high theoretical energy density are promising advanced energy storage devices.However,shuttling of dissolute lithium polysulfide(LiPSs)and sluggish conversion kinetics impede their a... Lithium-sulfur(Li-S)batteries with high theoretical energy density are promising advanced energy storage devices.However,shuttling of dissolute lithium polysulfide(LiPSs)and sluggish conversion kinetics impede their applications.Herein,single nickel(Ni)atoms on two-dimensional(2D)nitrogen(N)-doped carbon with Ni-N_(4)-O overcoordinated structure(SANi-N_(4)-O/NC)are prepared and firstly used as a sulfur host of Li-S batteries.Due to the efficient polysulfides traps and highly LiPSs conversion effect of SANi-N_(4)-O/NC,the electrochemical performance of Li-S batteries obviously improved.The batteries can well operate even under high sulfur loading(5.8 mg cm^(-2))and lean electrolyte(6.1μL mg^(-1))condition.Meanwhile,density functional theory(DFT)calculations demonstrate that Ni single atom’s active sites decrease the energy barriers of conversion reactions from Li_(2)S_(8)to Li2S due to the strong interaction between SANi-N_(4)-O/NC and LiPSs.Thus,the kinetic conversion of LiPSs was accelerated and the shuttle effect is suppressed on SANi-N_(4)-O/NC host.This study provides a new design strategy for a 2D structure with single-atom overcoordinated active sites to facilitate the fast kinetic conversion of LiPSs for Li-S cathode. 展开更多
关键词 nickel single atom catalyst Ni-N_(4)-O sites 2D N-doped carbon Li-S batteries Shuttle effect
下载PDF
Molybdenum Carbide Nano-Powder for Production of Mo-99 Radionuclides
15
作者 Vladimir D. Risovany Konstantin V. Rotmanov +5 位作者 Genady I. Maslakov Yury D. Goncharenko Grigory A. Shimansky Aleksandr I. Zvir Irina M. Smirnova Irina N. Kuchkina 《World Journal of Nuclear Science and Technology》 2012年第2期58-63,共6页
At present, there are two ways to produce 99Mo in a reactor: 1) fission process—from U fission product by reaction 235U (n, f) 99Mo and 2) activation process—by radiation capture reaction 98Mo (n, γ) 99Mo. This pap... At present, there are two ways to produce 99Mo in a reactor: 1) fission process—from U fission product by reaction 235U (n, f) 99Mo and 2) activation process—by radiation capture reaction 98Mo (n, γ) 99Mo. This paper presents the results of experiments performed with molybdenum carbide nano-powder to produce 99Mo. These results show the implementation of the above idea in practice. 展开更多
关键词 CARBIDE nano-powder Molybdenum-99 ACTIVATION PROCESS FISSION PROCESS
下载PDF
Wear Evaluation of Copper-Nickel-Aluminum Alloys under Extreme Conditions
16
作者 Rene Guardian Isai Rosales-Cadena +1 位作者 Constancio Diaz-Reyes Juan Antonio Ruiz-Ochoa 《Journal of Minerals and Materials Characterization and Engineering》 CAS 2023年第1期16-26,共11页
Cu-Ni-Al alloys at different concentrations were obtained using a high frequency induction melting unit, keeping a balance in the nominal compositions. Light alloys are important to be used in industrial applications.... Cu-Ni-Al alloys at different concentrations were obtained using a high frequency induction melting unit, keeping a balance in the nominal compositions. Light alloys are important to be used in industrial applications. Aluminum additions result in a positive hardness increment of the ternary alloys in comparison with the binary Cu-Ni alloys. Generalized wear mechanisms of the alloys with low aluminum content are basically type abrasive, while samples with 5 and 10 at.% Al present an oxidative-adhesive wear mechanism. Wear results have indicated that aluminum addition affects positively the wear resistance, mainly in samples with high aluminum content product of the creation during the test of different oxides corresponding to the elements present in the alloys. 展开更多
关键词 Copper nickel Alloys HARDNESS Mechanical Properties Heat Treatment
下载PDF
Electronic structure of cuprate-nickelate infinite-layer heterostructure
17
作者 陈大川 Paul Worm +4 位作者 司良 张春小 邓凤麟 蒋沛恒 钟志诚 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期391-396,共6页
The discovery of superconductivity in Sr/Ca-doped infinite-layer nickelates Nd(La)NiO_(2)thin films inspired extensive experimental and theoretical research.However,research on the possibilities of enhanced critical t... The discovery of superconductivity in Sr/Ca-doped infinite-layer nickelates Nd(La)NiO_(2)thin films inspired extensive experimental and theoretical research.However,research on the possibilities of enhanced critical temperature by interface heterostructure is still lacking.Due to the similarities of the crystal structure and band structure of infinite-layer nickelate La NiO_(2)and cuprate CaCuO_(2),we investigate the crystal,electronic and magnetic properties of La NiO_(2):CaCuO_(2)heterostructure using density functional theory and dynamical mean-field theory.Our theoretical results demonstrate that,even a very weak inter-layer z-direction bond is formed,an intrinsic charge transfer between Cu-3d_(x^(2)-y^(2))and Ni-3d_((x^(2)-y^(2)))orbitals is obtained.The weak interlayer hopping between Cu and Ni leaves a parallel band contributed by Ni/Cu-3d_((x^(2)-y^(2)))orbitals near the Fermi energy.Such an infinite-layer heterostructure with negligible interlayer interaction and robust charge transfer opens a new way for interface engineering and nickelate superconductors. 展开更多
关键词 nickelate superconductor infinite-layer oxide perovskite heterostructure
下载PDF
Concentration-Dependent Effect of Nickel Ions on Amyloid Fibril Formation Kinetics of Hen Egg White Lysozyme:a Raman Spectroscopy Study
18
作者 Xinfei Li Xiaodong Chen +3 位作者 Ning Chen Liming Liu Xiaoguo Zhou Shilin Liu 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2023年第5期517-525,I0001,共10页
Nickel,an important transi-tion metal element,is one of the trace elements for hu-man body and has a crucial impact on life and health.Some evidences show the excess exposure to metal ions might be associated with neu... Nickel,an important transi-tion metal element,is one of the trace elements for hu-man body and has a crucial impact on life and health.Some evidences show the excess exposure to metal ions might be associated with neurological diseases.Herein,we applied Raman spectroscopy to study the Ni(II)ion effect on kinetics of amyloid fibrillation of hen egg white lysozyme(HEWL)in thermal and acidic conditions.Using the well-known Raman indicators for protein tertiary and secondary structures,we monitored and analyzed the concentration effect of Ni(II)ions on the unfolding of tertiary structures and the transformation of sec-ondary structures.The experimental evidence validates the accelerator role of the metal ion in the kinetics.Notably,the additional analysis of the amide I band profile,combined with thioflavin-T fluorescence assays,clearly indicates the inhibitory effect of Ni(II)ions on the formation of amyloid fibrils with organizedβ-sheets structures.Instead,a more significant promotion influence is affirmed on the assembly into other aggregates with disordered struc-tures.The present results provide rich information about the specific metal-mediated protein fibrillation. 展开更多
关键词 Amyloid fibrillation Protein denaturation KINETICS nickel ion LYSOZYME
下载PDF
Peripheral octamethyl-substituted nickel(Ⅱ)-phthalocyanine-decorated carbon-nanotube electrodes for high-performance all-solid-state flexible symmetric supercapacitors
19
作者 Yu Wang Minzhang Li +5 位作者 Rajendran Ramachandran Haiquan Shan Qian Chen Anxin Luo Fei Wang Zong-Xiang Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期214-225,I0006,共13页
Construction of advanced electrode materials with unique performance for supercapacitors(SCs)is essential to achieving high implementation in the commercial market.Here,we report a novel peripheral octamethyl-substitu... Construction of advanced electrode materials with unique performance for supercapacitors(SCs)is essential to achieving high implementation in the commercial market.Here,we report a novel peripheral octamethyl-substituted nickel(Ⅱ)phthalocyanine(Ni Me_(2)Pc)-based nanocomposite as the electrode material of all-solid-state SCs.The highly redox-active NiMe_(2)Pc/carboxylated carbon nanotube(CNTCOOH)dendritic nanocomposite provides rapid electron/electrolyte ion-transport pathways and exhibits excellent structural stability,resulting in high-capacity activity and impressive cycling stability.The composite prepared with the optimized weight ratio of Ni Me_(2)Pc:CNT-COOH(6:10)showed the highest specific capacitance of 330.5 F g^(-1)at 0.25 A g^(-1).The constructed NiMe_(2)Pc/CNT-COOH-based all-solid-state symmetric SC device showed excellent performance with a maximum energy density of 22.8 Wh kg^(-1)and outstanding cycling stability(111.6%retained after 35,000 cycles).Moreover,flexible carbon cloth significantly enhanced the energy density of the NiMe_(2)Pc/CNT-COOH all-solid-state symmetric device to 52.1 Wh kg^(-1)with 95.4%capacitance retention after 35,000 cycles,and it could be applied to highperformance flexible electronics applications.These findings provide a novel strategy to design phthalocyanine-based electrode materials for next-generation flexible SC devices. 展开更多
关键词 nickel phthalocyanine Carbon nanotubes Nanocomposites Flexible supercapacitors Cycling stability
下载PDF
Unraveling the reaction reversibility and structure stability of nickel sulfide anodes for lithium ion batteries
20
作者 Yu Huang Chunyuan Liang +10 位作者 Yueling Cai Yi Zhou Bingkun Guo Jipeng Cheng Heguang Liu Peng Wang Qianqian Li Anmin Nie Hongtao Wang Jinsong Wu Tongyi Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期392-401,I0010,共11页
The electrochemical performance of lithium-ion batteries,i.e.specific capacity and cyclability,is primarily determined by chemical reversibility and structural stability of the electrodes in cycling.Here we have inves... The electrochemical performance of lithium-ion batteries,i.e.specific capacity and cyclability,is primarily determined by chemical reversibility and structural stability of the electrodes in cycling.Here we have investigated the fundamental reaction behaviors of nickel sulfide(NixSy)as lithium-ion battery anodes by in-situ TEM.We find that Ni_(3)S_(2)is the electrochemically stable phase,which appears in the first cycle of the NixSyanode.From the second cycle,conversion between Ni_(3)S_(2)and Li_(2)S/Ni is the dominant electrochemical reaction.In lithiation,the NixSynanoparticles evolve into a mixture of Ni nanocrystals embedded in Li_(2)S matrix,which form a porous structure upon full lithiation,and with the recrystallization of the Ni_(3)S_(2)phase in delithiation,a compact and interconnected network is built.Structural stability in cycles is susceptible to particle size and substrate restraint.Carbon substrate can certainly improve the tolerance for size-dependent pulverization of NixSynanoparticles.When NixSynanoparticle exceeds the critical size value,the morphology of the particle is no longer well maintained even under the constraints of the carbon substrate.This work deepens the understanding of electrochemical reaction behavior of conversiontype materials and helps to rational design of high-energy density battery anodes. 展开更多
关键词 nickel sulfide anodes Reaction reversility Structure rebuilding In-situ TEM Lithium-ion battery
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部