期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Night Vision Object Tracking System Using Correlation Aware LSTM-Based Modified Yolo Algorithm
1
作者 R.Anandha Murugan B.Sathyabama 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期353-368,共16页
Improved picture quality is critical to the effectiveness of object recog-nition and tracking.The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and diffe... Improved picture quality is critical to the effectiveness of object recog-nition and tracking.The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and different atmospheric conditions,such as mist,fog,dust etc.The pictures then shift in intensity,colour,polarity and consistency.A general challenge for computer vision analyses lies in the horrid appearance of night images in arbitrary illumination and ambient envir-onments.In recent years,target recognition techniques focused on deep learning and machine learning have become standard algorithms for object detection with the exponential growth of computer performance capabilities.However,the iden-tification of objects in the night world also poses further problems because of the distorted backdrop and dim light.The Correlation aware LSTM based YOLO(You Look Only Once)classifier method for exact object recognition and deter-mining its properties under night vision was a major inspiration for this work.In order to create virtual target sets similar to daily environments,we employ night images as inputs;and to obtain high enhanced image using histogram based enhancement and iterative wienerfilter for removing the noise in the image.The process of the feature extraction and feature selection was done for electing the potential features using the Adaptive internal linear embedding(AILE)and uplift linear discriminant analysis(ULDA).The region of interest mask can be segmen-ted using the Recurrent-Phase Level set Segmentation.Finally,we use deep con-volution feature fusion and region of interest pooling to integrate the presently extremely sophisticated quicker Long short term memory based(LSTM)with YOLO method for object tracking system.A range of experimentalfindings demonstrate that our technique achieves high average accuracy with a precision of 99.7%for object detection of SSAN datasets that is considerably more than that of the other standard object detection mechanism.Our approach may therefore satisfy the true demands of night scene target detection applications.We very much believe that our method will help future research. 展开更多
关键词 Object monitoring night vision image SSAN dataset adaptive internal linear embedding uplift linear discriminant analysis recurrent-phase level set segmentation correlation aware LSTM based yolo classifier algorithm
下载PDF
Single-image night haze removal based on color channel transfer and estimation of spatial variation in atmospheric light
2
作者 Shu-yun Liu Qun Hao +6 位作者 Yu-tong Zhang Feng Gao Hai-ping Song Yu-tong Jiang Ying-sheng Wang Xiao-ying Cui Kun Gao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第7期134-151,共18页
The visible-light imaging system used in military equipment is often subjected to severe weather conditions, such as fog, haze, and smoke, under complex lighting conditions at night that significantly degrade the acqu... The visible-light imaging system used in military equipment is often subjected to severe weather conditions, such as fog, haze, and smoke, under complex lighting conditions at night that significantly degrade the acquired images. Currently available image defogging methods are mostly suitable for environments with natural light in the daytime, but the clarity of images captured under complex lighting conditions and spatial changes in the presence of fog at night is not satisfactory. This study proposes an algorithm to remove night fog from single images based on an analysis of the statistical characteristics of images in scenes involving night fog. Color channel transfer is designed to compensate for the high attenuation channel of foggy images acquired at night. The distribution of transmittance is estimated by the deep convolutional network DehazeNet, and the spatial variation of atmospheric light is estimated in a point-by-point manner according to the maximum reflection prior to recover the clear image. The results of experiments show that the proposed method can compensate for the high attenuation channel of foggy images at night, remove the effect of glow from a multi-color and non-uniform ambient source of light, and improve the adaptability and visual effect of the removal of night fog from images compared with the conventional method. 展开更多
关键词 Dehazing image captured at night Chromaticity fusion correction Color channel transfer Spatial change-based atmospheric light ESTIMATION DehazeNet
下载PDF
Preprocessing method of night vision image application in apple harvesting robot 被引量:4
3
作者 Weikuan Jia Yuanjie Zheng +3 位作者 De’an Zhao Xiang Yin Xiaoyang Liu Ruicheng Du 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2018年第2期158-163,共6页
Due to the low working efficiency of apple harvesting robots,there is still a long way to go for commercialization.The machine performance and extended operating time are the two research aspects for improving efficie... Due to the low working efficiency of apple harvesting robots,there is still a long way to go for commercialization.The machine performance and extended operating time are the two research aspects for improving efficiencies of harvesting robots,this study focused on the extended operating time and proposed a round-the-clock operation mode.Due to the influences of light,temperature,humidity,etc.,the working environment at night is relatively complex,and thus restricts the operating efficiency of the apple harvesting robot.Three different artificial light sources(incandescent lamp,fluorescent lamp,and LED lights)were selected for auxiliary light according to certain rules so that the apple night vision images could be captured.In addition,by color analysis,night and natural light images were compared to find out the color characteristics of the night vision images,and intuitive visual and difference image methods were used to analyze the noise characteristics.The results showed that the incandescent lamp is the best artificial auxiliary light for apple harvesting robots working at night,and the type of noise contained in apple night vision images is Gaussian noise mixed with some salt and pepper noise.The preprocessing method can provide a theoretical and technical reference for subsequent image processing. 展开更多
关键词 apple harvesting robot night vision image preprocessing method color analysis noise analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部