BACKGROUND: Nikethamide, a respiratory center stimulant, is widely used in China. However, its effects on the central nervous system and medullary respiratory center remain poorly understood. OBJECTIVE: To investiga...BACKGROUND: Nikethamide, a respiratory center stimulant, is widely used in China. However, its effects on the central nervous system and medullary respiratory center remain poorly understood. OBJECTIVE: To investigate the influence of nikethamide on inspiratory neuron discharge in the medial region of the nucleus retrofacialis in neonatal rats, based on the observations addressing rhythmic respiratory discharge generated by the basic medullary respiratory center and various respiration neuron discharges in brain slices. DESIGN, TIME AND SETTING: A controlled, observational study utilizing in vitro neuroelectrophysiology was performed at the Department of Physiology in Southern Medical University between September and December in 2007. MATERIALS: Nikethamide was purchased from Sigma, USA; BL-420E biological signal collection and manaclement system was provided by Chengdu TME Technology, China.METHODS: Isolated medulla-spinal cord preparations were collected from neonatal Sprague Dawley rats, aged 1-3 days. Tissues were divided to include the medial region of the nucleus retrofacialis, ventral respiratory, and dorsal respiratory groups. Subsequently, modified Kreb's solution and 5 μg/mL nikethamide-containing modified Kreb's solution were consecutively perfused into the medial region of the nucleus retrofacialis in neonatal rat brain slices. MAIN OUTCOME MEASURES: Hypoglossal nerve root respiratory-related rhythmic discharge activities and inspiratory neuron discharges were recorded with an adsorption electrode and microelectrode. RESULTS Nikethamide resulted in prolonged inspiratory neuron discharge time, shortened respiratory cycle and expiratory time. Nikethamide intervention resulted in enhanced integral amplitude of some inspiratory neurons with no changes in discharge frequency or increased discharge frequency in remaining inspiratory neurons with no changes in integral amplitude. CONCLUSION: Nikethamide excites inspiratory neurons in the basic rhythmic respiration and medullary respiratory center, in addition to increased inspiratory neuron and neural network excitability.展开更多
以美国内布拉斯加医学中心(University of Nebraska Medical Center,UNMC)岗位胜任力为导向培养Pharm.D.为例,介绍了其灵活多样的课堂教学方法、丰富充实的实践课程、注重人文素质培养的教育理念。临床中药学作为一门新兴的医药交叉学科...以美国内布拉斯加医学中心(University of Nebraska Medical Center,UNMC)岗位胜任力为导向培养Pharm.D.为例,介绍了其灵活多样的课堂教学方法、丰富充实的实践课程、注重人文素质培养的教育理念。临床中药学作为一门新兴的医药交叉学科,对人才的培养存在一些不足,建议结合美国Pharm.D.培养的先进经验,构建符合学科特色的临床中药学人才培养体系,培养优秀的临床中药学人才,为中医药事业的持续发展做出贡献。展开更多
The traditional vaccines against hepatitis have been instrumental in reducing the incidence of some types of viral hepatitis;however,the need for cost-effective,easily distributable,and needle-free vaccine alternative...The traditional vaccines against hepatitis have been instrumental in reducing the incidence of some types of viral hepatitis;however,the need for cost-effective,easily distributable,and needle-free vaccine alternatives has led to the exploration of plant-based vaccines.Plant-based techniques offer a promising avenue for producing viral hepatitis vaccines due to their low-cost cultivation,scalability,and the potential for oral administration.This review highlights the successful expression of hepatitis B surface antigens in plants and the subsequent formation of virus-like particles,which have shown immunogenicity in preclinical and clinical trials.The challenges such as achieving sufficient antigen expression levels,ensuring consistent dosing,and navigating regulatory frameworks,are addressed.The review considers the potential of plant-based vaccines to meet the demands of rapid vaccine deployment in response to outbreaks and their role in global immunization strategies,particularly in resource-limited settings.This review underscores the significant strides made in plant molecular farming and the potential of plant-based vaccines to complement existing immunization methods against viral hepatitis.展开更多
基金the National Natural Science Foundation of China,No.30570670the Natural Science Foundation of Guangdong Province,No.5004714
文摘BACKGROUND: Nikethamide, a respiratory center stimulant, is widely used in China. However, its effects on the central nervous system and medullary respiratory center remain poorly understood. OBJECTIVE: To investigate the influence of nikethamide on inspiratory neuron discharge in the medial region of the nucleus retrofacialis in neonatal rats, based on the observations addressing rhythmic respiratory discharge generated by the basic medullary respiratory center and various respiration neuron discharges in brain slices. DESIGN, TIME AND SETTING: A controlled, observational study utilizing in vitro neuroelectrophysiology was performed at the Department of Physiology in Southern Medical University between September and December in 2007. MATERIALS: Nikethamide was purchased from Sigma, USA; BL-420E biological signal collection and manaclement system was provided by Chengdu TME Technology, China.METHODS: Isolated medulla-spinal cord preparations were collected from neonatal Sprague Dawley rats, aged 1-3 days. Tissues were divided to include the medial region of the nucleus retrofacialis, ventral respiratory, and dorsal respiratory groups. Subsequently, modified Kreb's solution and 5 μg/mL nikethamide-containing modified Kreb's solution were consecutively perfused into the medial region of the nucleus retrofacialis in neonatal rat brain slices. MAIN OUTCOME MEASURES: Hypoglossal nerve root respiratory-related rhythmic discharge activities and inspiratory neuron discharges were recorded with an adsorption electrode and microelectrode. RESULTS Nikethamide resulted in prolonged inspiratory neuron discharge time, shortened respiratory cycle and expiratory time. Nikethamide intervention resulted in enhanced integral amplitude of some inspiratory neurons with no changes in discharge frequency or increased discharge frequency in remaining inspiratory neurons with no changes in integral amplitude. CONCLUSION: Nikethamide excites inspiratory neurons in the basic rhythmic respiration and medullary respiratory center, in addition to increased inspiratory neuron and neural network excitability.
文摘以美国内布拉斯加医学中心(University of Nebraska Medical Center,UNMC)岗位胜任力为导向培养Pharm.D.为例,介绍了其灵活多样的课堂教学方法、丰富充实的实践课程、注重人文素质培养的教育理念。临床中药学作为一门新兴的医药交叉学科,对人才的培养存在一些不足,建议结合美国Pharm.D.培养的先进经验,构建符合学科特色的临床中药学人才培养体系,培养优秀的临床中药学人才,为中医药事业的持续发展做出贡献。
文摘The traditional vaccines against hepatitis have been instrumental in reducing the incidence of some types of viral hepatitis;however,the need for cost-effective,easily distributable,and needle-free vaccine alternatives has led to the exploration of plant-based vaccines.Plant-based techniques offer a promising avenue for producing viral hepatitis vaccines due to their low-cost cultivation,scalability,and the potential for oral administration.This review highlights the successful expression of hepatitis B surface antigens in plants and the subsequent formation of virus-like particles,which have shown immunogenicity in preclinical and clinical trials.The challenges such as achieving sufficient antigen expression levels,ensuring consistent dosing,and navigating regulatory frameworks,are addressed.The review considers the potential of plant-based vaccines to meet the demands of rapid vaccine deployment in response to outbreaks and their role in global immunization strategies,particularly in resource-limited settings.This review underscores the significant strides made in plant molecular farming and the potential of plant-based vaccines to complement existing immunization methods against viral hepatitis.