Taking ^120Sn as an example, we discuss the pseudospin symmetry in the single proton resonant states by examining the energies, widths and the wavefunctions. The information of the single proton resonant states in sph...Taking ^120Sn as an example, we discuss the pseudospin symmetry in the single proton resonant states by examining the energies, widths and the wavefunctions. The information of the single proton resonant states in spherical nuclei are extracted from an analytic continuation in the coupling constant method within the framework of the self-consistent relativistic mean field theory under the relativistic boundary condition. We find small energy splitting in a pair of pseudospin partners in the resonant states. The lower components of the Dirac wavefunctions of a pseudospin doublet agree well in the region where nuclear potential dominates. It is concluded that the pseudospin symmetry is also well conserved for the resonant states in realistic nuclei.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 10447102, 10475003, 10435010 and 10605004, and the Scientific Research Innovation Foundation of BUAA.
文摘Taking ^120Sn as an example, we discuss the pseudospin symmetry in the single proton resonant states by examining the energies, widths and the wavefunctions. The information of the single proton resonant states in spherical nuclei are extracted from an analytic continuation in the coupling constant method within the framework of the self-consistent relativistic mean field theory under the relativistic boundary condition. We find small energy splitting in a pair of pseudospin partners in the resonant states. The lower components of the Dirac wavefunctions of a pseudospin doublet agree well in the region where nuclear potential dominates. It is concluded that the pseudospin symmetry is also well conserved for the resonant states in realistic nuclei.