Rice cultivation is considered to be initiated by vegetative propagation of sprout from wild perennial stocks. To test whether any presently cultivated rice cultivar can survive the winter cold or not, rice stocks of ...Rice cultivation is considered to be initiated by vegetative propagation of sprout from wild perennial stocks. To test whether any presently cultivated rice cultivar can survive the winter cold or not, rice stocks of several cultivars including indica and japonica types were placed in a shallow pool from October to April in 2015–2016 and 2016–2017. During the coldest period of the winter, the bases of the stocks were placed 5–6 cm below the surface of water, where temperatures ranged from 3 ℃ to 5 ℃, while the surface was frozen for two or three times and covered with snow for a day. Only one cultivar, Nipponbare, a japonica type, survived the winter cold and regenerated sprouts in the end of April or early May. A possibility to develop perennial cultivation of rice or perennial hybrid rice is discussed.展开更多
In two cases, mutations in the same brassinosteroid-related genes caused different phenotypes in japonica varieties Nipponbare and Taichung 65. The mutant phenotypes were less severe in the Taichung 65 background than...In two cases, mutations in the same brassinosteroid-related genes caused different phenotypes in japonica varieties Nipponbare and Taichung 65. The mutant phenotypes were less severe in the Taichung 65 background than in the Nipponbare background. Three newly isolated brassinosteroid-insensitive mutants (d61-1N, d61-11, and d61-12) derived from a Nipponbare mutant library were found to be alleles of d61, which represent defects in the OsBRI1 gene. Although the Nipponbare-derived mutant d61-1N had the same nucleotide substitution as the previously characterized Taichung 65-derived mutant d61-1T, these two mutants showed different phenotypes for plant stature, internode elongation pattern, and seed shape;in each case, d61-1N (in the Nipponbare genetic background) had the more severe mutant phenotype. Similar trends were seen for phenotypes caused by mutants of d2, a brassinosteroid biosynthesis gene. Consistent with these phenotypes, the expression of brassinosteroid-responsive genes was lower in the Nipponbare-derived mutants. These results can be explained by our findings that feed-forward up-regulation of OsBRI1 did not occur in the Nipponbare-derived mutants and that an mPing transposon is inserted into the promoter region of Nipponbare OsBRI1. Based on these results, we conclude that the expression of OsBRI1, especially its feed-forward up-regulation, is misregulated in wild-type Nipponbare and in brassinosteroid-related mutants in a Nipponbare genetic background. Although Nipponbare is a model rice genotype, it can be categorized as an OsBRI1 mutant that has reduced sensitivity to brassinosteroid.展开更多
文摘Rice cultivation is considered to be initiated by vegetative propagation of sprout from wild perennial stocks. To test whether any presently cultivated rice cultivar can survive the winter cold or not, rice stocks of several cultivars including indica and japonica types were placed in a shallow pool from October to April in 2015–2016 and 2016–2017. During the coldest period of the winter, the bases of the stocks were placed 5–6 cm below the surface of water, where temperatures ranged from 3 ℃ to 5 ℃, while the surface was frozen for two or three times and covered with snow for a day. Only one cultivar, Nipponbare, a japonica type, survived the winter cold and regenerated sprouts in the end of April or early May. A possibility to develop perennial cultivation of rice or perennial hybrid rice is discussed.
文摘In two cases, mutations in the same brassinosteroid-related genes caused different phenotypes in japonica varieties Nipponbare and Taichung 65. The mutant phenotypes were less severe in the Taichung 65 background than in the Nipponbare background. Three newly isolated brassinosteroid-insensitive mutants (d61-1N, d61-11, and d61-12) derived from a Nipponbare mutant library were found to be alleles of d61, which represent defects in the OsBRI1 gene. Although the Nipponbare-derived mutant d61-1N had the same nucleotide substitution as the previously characterized Taichung 65-derived mutant d61-1T, these two mutants showed different phenotypes for plant stature, internode elongation pattern, and seed shape;in each case, d61-1N (in the Nipponbare genetic background) had the more severe mutant phenotype. Similar trends were seen for phenotypes caused by mutants of d2, a brassinosteroid biosynthesis gene. Consistent with these phenotypes, the expression of brassinosteroid-responsive genes was lower in the Nipponbare-derived mutants. These results can be explained by our findings that feed-forward up-regulation of OsBRI1 did not occur in the Nipponbare-derived mutants and that an mPing transposon is inserted into the promoter region of Nipponbare OsBRI1. Based on these results, we conclude that the expression of OsBRI1, especially its feed-forward up-regulation, is misregulated in wild-type Nipponbare and in brassinosteroid-related mutants in a Nipponbare genetic background. Although Nipponbare is a model rice genotype, it can be categorized as an OsBRI1 mutant that has reduced sensitivity to brassinosteroid.