期刊文献+
共找到2,757篇文章
< 1 2 138 >
每页显示 20 50 100
Strategies of selective electroreduction of aqueous nitrate to N_(2) in chloride-free system:A critical review
1
作者 Fukuan Li Weizhe Zhang +2 位作者 Peng Zhang Ao Gong Kexun Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期198-216,共19页
Electroreduction of nitrate has been gaining wide attention in recent years owing to it's beneficial for converting nitrate into benign N_(2) from the perspective of electrocatalytic denitrification or into value-... Electroreduction of nitrate has been gaining wide attention in recent years owing to it's beneficial for converting nitrate into benign N_(2) from the perspective of electrocatalytic denitrification or into value-added ammonia from the perspective of electrocatalytic NH_(3) synthesis.By reason of the undesired formation of ammonia is dominant during electroreduction of nitrate-containing wastewater,chloride has been widely used to improve N_(2) selectivity.Nevertheless,selective electroreduction of nitrate to N2 gas in chloride-containing system poses several drawbacks.In this review,we focus on the key strategies for efficiently enhancing N_(2) selectivity of electroreduction of nitrate in chloride-free system,including optimal selection of elements,combining an active metal catalyst with another metal,manipulating the crystalline morphology and facet orientation,constructing core–shell structure catalysts,etc.Before summarizing the strategies,four possible reaction pathways of electro-reduction of nitrate to N_(2) are discussed.Overall,this review attempts to provide practical strategies for enhancing N2 selectivity without the aid of electrochlorination and highlight directions for future research for designing appropriate electrocatalyst for final electrocatalytic denitrifi-cation. 展开更多
关键词 nitrate CHLORIDE ELECTROREDUCTION SELECTIVITY nitrogen
下载PDF
Tracing nitrate sources in one of the world's largest eutrophicated bays(Hangzhou Bay):insights from nitrogen and oxygen isotopes
2
作者 Zhi Yang Jianfang Chen +6 位作者 Haiyan Jin Hongliang Li Zhongqiang Ji Yangjie Li Bin Wang Zhenyi Cao Qianna Chen 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第6期86-95,共10页
Eutrophication caused by inputs of excess nitrogen(N) has become a serious environmental problem in Hangzhou Bay(China),but the sources of this nitrogen are not well understood.In this study,the August 2019 distributi... Eutrophication caused by inputs of excess nitrogen(N) has become a serious environmental problem in Hangzhou Bay(China),but the sources of this nitrogen are not well understood.In this study,the August 2019 distributions of salinity,nutrients [nitrate(NO_(3)^(-)),nitrite,ammonium,and phosphate],and the stable isotopic composition of NO_(3)^(-)(δ^(15)N and δ^(18)O) were used to investigate sources of dissolved inorganic nitrogen(DIN) to Hangzhou B ay.Spatial distributions of nitrate,salinity,and nitrate δ^(18)O indicate that the Qiantang River,the Changjiang River,and nearshore coastal waters may all contribute nitrate to the bay.Based on the isotopic compositions of nitrate in these potential source waters and conservative mixing of nitrate in our study area,we suggest that the NO_(3)^(- )in Hangzhou B ay was likely derived mainly from soils,synthetic N fertilizer,and manure and sewage.End-member modeling indicates that in the upper half of the bay,the Qiantang River was a very important DIN source,possibly contributing more than 50% of DIN in the bay head area.In the lower half of the bay,DIN was sourced mainly from strongly intruding coastal water.DIN coming directly from the Changjiang River made a relatively small contribution to Hangzhou Bay DIN in August 2019. 展开更多
关键词 nitrogen isotopes oxygen isotopes nitrogen cycle nitrate sources Hangzhou Bay
下载PDF
Appropriate Supply of Ammonium Nitrogen and Ammonium Nitrate Reduces Cadmium Content in Rice Seedlings by Inhibiting Cadmium Uptake and Transport
3
作者 HU Yunchao YAN Tiancai +13 位作者 GAO Zhenyu WANG Tiankang LU Xueli YANG Long SHEN Lan ZHANG Qiang HU Jiang REN Deyong ZHANG Guangheng ZHU Li LI Li ZENG Dali QIAN Qian LI Qing 《Rice science》 SCIE CSCD 2024年第5期587-602,I0062-I0064,共19页
Reasonable nitrogen(N) application is a promising strategy for reducing crop cadmium(Cd) toxicity. However, the specific form of N and the required amount that affect Cd tolerance and accumulation in rice remain uncle... Reasonable nitrogen(N) application is a promising strategy for reducing crop cadmium(Cd) toxicity. However, the specific form of N and the required amount that affect Cd tolerance and accumulation in rice remain unclear. This study explored the influence of different N-fertilizer forms(NH_(4)NO_(3), NH_4Cl, and KNO_(3)) and dosages on Cd tolerance and uptake in Cd-stressed N-sensitive and N-insensitive indica rice accessions. The results indicated that the Cd tolerance of N-sensitive indica accessions is more robust than that of N-insensitive ones. Furthermore, the shoot Cd content and Cd translocation rate in both N-sensitive and N-insensitive indica accessions decreased with an appropriate supply of NH_(4)NO_(3) and NH_4Cl, whereas they were comparable or slightly increased with increased KNO_(3). Unfortunately, we did not find significant and regular differences in Cd accumulation or translocation between N-sensitive and N-insensitive rice accessions. Consistent with the reduction of shoot Cd content, the addition of NH_(4)NO_(3) and NH_4Cl also inhibited the instantaneous root Cd^(2+) uptake. The expression changes of Cd transport-related genes under different N forms and dosages suggested that the decreased shoot Cd content, caused by the increased supply of NH_(4)NO_(3) and NH_4Cl, is likely achieved by reducing the transcription of OsNRAMP1 and OsIRT1. In summary, our findings reveal that an appropriate supply of NH_(4)NO_(3) and NH_4Cl could reduce Cd uptake and transport in rice seedlings, suggesting that rational N management could reduce the Cd risk in rice production. 展开更多
关键词 Oryza sativa CADMIUM nitrogen ammonium nitrate ammonium chloride
下载PDF
OsNPF3.1,a nitrate,abscisic acid and gibberellin transporter gene,is essential for rice tillering and nitrogen utilization efficiency
4
作者 Junnan Hang Bowen Wu +3 位作者 Diyang Qiu Guo Yang Zhongming Fang Mingyong Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1087-1104,共18页
Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone ... Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone transport and rice growth and development remains unknown.In this study,we described OsNPF3.1 as an essential nitrate and phytohormone transporter gene for rice tillering and nitrogen utilization efficiency(NUtE).OsNPF3.1 possesses four major haplotypes of its promoter sequence in 517 cultivars,and its expression is positively associated with tiller number.Its expression was higher in the basal part,culm,and leaf blade than in other parts of the plant,and was strongly induced by nitrate,abscisic acid(ABA)and gibberellin 3(GA_3)in the root and shoot of rice.Electrophysiological experiments demonstrated that OsNPF3.1 is a pH-dependent low-affinity nitrate transporter,with rice protoplast uptake assays showing it to be an ABA and GA_3 transporter.OsNPF3.1 overexpression significantly promoted ABA accumulation in the roots and GA accumulation in the basal part of the plant which inhibited axillary bud outgrowth and rice tillering,especially at high nitrate concentrations.The NUtE of OsNPF3.1-overexpressing plants was enhanced under low and medium nitrate concentrations,whereas the NUtE of OsNPF3.1 clustered regularly interspaced short palindromic repeats(CRISPR)plants was increased under high nitrate concentrations.The results indicate that OsNPF3.1 transports nitrate and phytohormones in different rice tissues under different nitrate concentrations.The altered OsNPF3.1 expression improves NUtE in the OsNPF3.1-overexpressing and CRISPR lines at low and high nitrate concentrations,respectively. 展开更多
关键词 rice tillering grain yield PHYTOHORMONE nitrate transporter nitrogen utilization efficiency
下载PDF
Recent Advances in Transition Metal-Based Catalysts for Electrocatalytic Nitrate Reduction Reaction
5
作者 LUO Hongxia CHEN Jun YANG Jianping 《Journal of Donghua University(English Edition)》 CAS 2024年第4期333-348,共16页
The accumulation of excessive nitrate in the atmosphere not only jeopardizes human health but also disrupts the balance of the nitrogen cycle in the ecosystem.Among various nitrate removal technologies,electrocatalyti... The accumulation of excessive nitrate in the atmosphere not only jeopardizes human health but also disrupts the balance of the nitrogen cycle in the ecosystem.Among various nitrate removal technologies,electrocatalytic nitrate reduction reaction(eNO_(3)RR)has been widely studied for its advantages of being eco-friendly,easy to operate,and controllable under environmental conditions with renewable energy as the driving force.Transition metal-based catalysts(TMCs)have been widely used in electrocatalysis due to their abundant reserves,low costs,easy-to-regulate electronic structure and considerable electrochemical activity.In addition,TMCs have been extensively studied in terms of the kinetics of the nitrate reduction reaction,the moderate adsorption energy of nitrogen-containing species and the active hydrogen supply capacity.Based on this,this review firstly discusses the mechanism as well as analyzes the two main reduction products(N_(2)and NH_(3))of eNO_(3)RR,and reveals the basic guidelines for the design of efficient nitrate catalysts from the perspective of the reaction mechanism.Secondly,this review mainly focuses on the recent advances in the direction of eNO_(3RR)with four types of TMCs,Fe,Co,Ni and Cu,and unveils the interfacial modulation strategies of Fe,Co,Ni and Cu catalysts for the activity,reaction pathway and stability.Finally,reasonable suggestions and opportunities are proposed for the challenges and future development of eNO_(3)RR.This review provides far-reaching implications for exploring cost-effective TMCs to replace high-cost noble metal catalysts(NMCs)for eNO_(3)RR. 展开更多
关键词 electrocatalysis nitrate reduction reaction transition metal-based catalyst(TMC) reaction mechanism nitrogen cycle
下载PDF
Effects of Soil Nitrate Nitrogen Residues and Leaching for Different Kinds of Slow-release Nitrogen Fertilizers in Tall-fescue Soil
6
作者 谷佳林 方瑞元 +4 位作者 徐凯 张东雷 张宜霞 刘善江 张玉铎 《Agricultural Science & Technology》 CAS 2013年第7期1017-1020,共4页
ObjectiveThe aim was to explore the movement of nitrate nitrogen in tall-fescue soils by different kinds of slow release nitrogen fertilizers. MethodBased on infiltration-tanks and test plots, a new and environment fr... ObjectiveThe aim was to explore the movement of nitrate nitrogen in tall-fescue soils by different kinds of slow release nitrogen fertilizers. MethodBased on infiltration-tanks and test plots, a new and environment friendly fertilizer was explored. ResultThe results show that compared with urea treatment, slow-release nitrogen fertilizer treatments could reduce nitrate nitrogen content and leaching amount in soils. Compared with PCU30 and IU treatments, the PCU60 treatment became more efficient in reducing nitrate content and leaching amount in 0-90 cm soil layer. ConclusionIn summary, slow-release nitrogen fertilizer, which can reduce soil nitrate content and leaching losses, is a kind of novel fertilizer with high environmental benefit and promising application. 展开更多
关键词 Slow-release nitrogen fertilizers Tall fescue Residues of nitrate nitrogen LEACHING
下载PDF
Exogenous addition of nitrate nitrogen regulates the uptake and translocation of lead (Pb) by Iris lacteal Pall. var. chinensis (Fisch.) Koidz.
7
作者 SUN Mengjie GUO Shiwen +1 位作者 XIONG Chunlian LI Pinfang 《Journal of Arid Land》 SCIE CSCD 2023年第2期218-230,共13页
Since Pb is a non-biodegradable inorganic pollutant and a non-essential metal,its long-term presence in soil poses a great threat to the environment.Iris lactea Pall.var.chinensis(Fisch.)Koidz.,a perennial dense bush ... Since Pb is a non-biodegradable inorganic pollutant and a non-essential metal,its long-term presence in soil poses a great threat to the environment.Iris lactea Pall.var.chinensis(Fisch.)Koidz.,a perennial dense bush herb with high resistance of Pb and wide adaptability,was used in pot experiments to study the effects of exogenous nitrate N(NO_(3)^(–)-N)on the absorption and transportation of Pb and plant growth under different Pb concentrations.Then,the mechanism of NO_(3)^(-)-N affecting Pb and nutrient uptake and transport was explored.The concentration of Pb in the experiment ranged from 0 to 1600 mg/kg,and the added concentration of NO_(3)^(-)-N was 0.0–0.3 g/kg.The results showed that I.lactea was highly tolerant to Pb,and the shoot fraction was more sensitive to varied Pb concentrations in the soil than the root fraction.This protective function became more pronounced under the condition of raised Pb concentration in the soil.When the concentration of Pb in the soil reached 800 mg/kg,the highest Pb content of I.lactea was found under the condition of 0.1 g/kg of NO–3-N addition.When Pb concentration in the soil increased to 1600 mg/kg,the increase in NO_(3)^(-)-N addition promoted Pb uptake by the root.To ensure the well growth of I.lactea and the effect of remediation of Pb-contaminated soil,the recommended concentration of NO–3-N in the soil is 0.1 g/kg.This result provides a theoretical basis for exogenous N regulation of phytoremediation of Pb-contaminated soil. 展开更多
关键词 Iris lactea nitrate nitrogen plant nutrient lead accumulation ABSORB transport
下载PDF
Selective synthesis of nitrate from air using a plasma-driven gas-liquid relay reaction system
8
作者 Sibo Chen Kai Mei +2 位作者 Yaru Luo Liang-Xin Ding Haihui Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期439-446,I0012,共9页
The direct oxidation of nitrogen is a potential pathway to achieving the zero-carbon-emission synthesis of nitric acid or nitrate, because it does not involve ammonia synthesis and additional ammonia oxidation process... The direct oxidation of nitrogen is a potential pathway to achieving the zero-carbon-emission synthesis of nitric acid or nitrate, because it does not involve ammonia synthesis and additional ammonia oxidation processes. However, the slow kinetics of nitrogen oxidation and the difficult selective control of oxidation products hinder the development of this process. In this study, a plasma-driven gas-liquid relay reaction system was developed to overcome these limitations. A typical feature of this reaction system is that it can efficiently generate NO_x under plasma exposure;moreover, the specific anions in the absorption solution can be oxidized to strong oxidants capable of relay oxidation of low-valence nitrogen oxides. This feature allows for the deep oxidation of nitrogen, thus enabling the oxidation products of nitrogen to exist in high-valence states in the absorption solution. For experimental verification, we achieved the 100% selective synthesis of nitrate under plasma exposure, with air as the supply gas and a sodium sulfate solution as the absorption solution. 展开更多
关键词 nitrogen oxidation nitrate synthesis Plasma Relay reaction High selectivity
下载PDF
Recent progress and challenges in structural construction strategy of metal-based catalysts for nitrate electroreduction to ammonia
9
作者 Shuai Niu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期69-83,I0003,共16页
Ammonia plays an essential role in human production and life as a raw material for chemical fertilizers.The nitrate electroreduction to ammonia reaction(NO_(3)RR)has garnered attention due to its advantages over the H... Ammonia plays an essential role in human production and life as a raw material for chemical fertilizers.The nitrate electroreduction to ammonia reaction(NO_(3)RR)has garnered attention due to its advantages over the Haber-Bosch process and electrochemical nitrogen reduction reaction.Therefore,it represents a promising approach to safeguard the ecological environment by enabling the cycling of nitrogen species.This review begins by discussing the theoretical insights of the NO_(3)RR.It then summarizes recent advances in catalyst design and construction strategies,including alloying,structure engineering,surface engineering,and heterostructure engineering.Finally,the challenges and prospects in this field are presented.This review aims to guide for enhancing the efficiency of electrocatalysts in the NO_(3)RR,and offers insights for converting NO_(3)-to NH_(3). 展开更多
关键词 nitrate electroreduction to ammonia reaction(NO^(3)RR) Structural construction strategy nitrogen cycle Metal-based catalysts Catalytic mechanism
下载PDF
Nitrogen removal efficiency of iron-carbon micro-electrolysis system treating high nitrate nitrogen organic pharmaceutical wastewater 被引量:4
10
作者 周健 段送华 +1 位作者 陈垚 胡斌 《Journal of Central South University》 SCIE EI CAS 2009年第S1期368-373,共6页
The nitrate nitrogen removal efficiency of iron-carbon micro-electrolysis system was discussed in treating pharmaceutical wastewater with high nitrogen and refractory organic concentration. The results show that the g... The nitrate nitrogen removal efficiency of iron-carbon micro-electrolysis system was discussed in treating pharmaceutical wastewater with high nitrogen and refractory organic concentration. The results show that the granularity of fillings,pH,volume ratios of iron-carbon and gas-water,and HRT. have significant effects on the nitrogen removal efficiency of iron-carbon micro-electrolysis system. The iron-carbon micro-electrolysis system has a good removal efficiency of pharmaceutical wastewater with high nitrogen and refractory organic concentration when the influent TN,NH4+-N,NO3--N and BOD5/CODCr are 823 mg/L,30 mg/L,793 mg/L and 0.1,respectively,at the granularity of iron and carbon 0.425 mm,pH 3,iron-carbon ratio 3,gas-water ratio 5,HRT 1.5 h,and the removal rates of TN,NH4+-N and NO3--N achieve 51.5%,70% and 50.94%,respectively. 展开更多
关键词 IRON-CARBON MICRO-ELECTROLYSIS nitrogen nitrate nitrogen REMOVAL efficiency REMOVAL rate
下载PDF
Nitrogen Fertilization as Ammonium or Nitrate-N on <i>Hippeastrum hybridum</i>Bulb Growth 被引量:2
11
作者 Carlos Vazquez Stewart T. Reed Christopher Dunn 《Agricultural Sciences》 2015年第12期1547-1554,共8页
Hippeastrum (Hippeastrum hybridum), a native of Central and South America, is a bulbous ornamental flowering plant in the Amaryllidaceae family. However, the correct balance of NH4 to NO3-nitrogen in a fertilizer mix ... Hippeastrum (Hippeastrum hybridum), a native of Central and South America, is a bulbous ornamental flowering plant in the Amaryllidaceae family. However, the correct balance of NH4 to NO3-nitrogen in a fertilizer mix for Hippeastrum plants is largely unknown. Nitrogen was applied 2x weekly following irrigation at either 0.6 g (high), 0.3 g (medium) or 0.15 g (low) total N every four months. Nitrogen was supplied in different combinations of NO3 and/or NH4. Nitrate:NH4-N ratios were either 100% NO3:0% NH4 (100NO3), 70% NO3:30% NH4 (70NO3), 50% NO3:50% NH4 (50NO3) (second group only), 30%NO3:70%NH4 (30NO3), or 0% NO3/100% NH4 (100NH4). Growth in bulb diameter after one year of fertilizer treatments not only increased from 0.15 to 0.6 g N (low to high level), but also differed with the form of N supplied to the plant. The largest diameter bulbs were produced in the 70NO3 and 50NO3 high N treatments. Within any NO3/NH4-N ratio grouping, fertilization at the high N rate resulted in larger diameter bulbs. No significant differences existed between treatments in the number of bulbs produced. Bulb growth was greater with a portion of N supplied as NO3 than with NH4-N alone. These results indicate that application of N as a mixture of NH4 and NO3 at 0.6 g per 4 months produces the largest increase in bulb diameter. 展开更多
关键词 Hippeastrum Amaryllis nitrogen FERTILIZATION AMMONIUM nitrate
下载PDF
TaNRT2.1-6B is a dual-affinity nitrate transporter contributing to nitrogen uptake in bread wheat under both nitrogen deficiency and sufficiency 被引量:3
12
作者 Mengjiao Li Tian Wang +4 位作者 Hui Zhang Shuo Liu Wenhu Li Salah F.Abou Elwafa Hui Tian 《The Crop Journal》 SCIE CSCD 2022年第4期993-1005,共13页
Multiple nitrate transporter(NRT)genes exist in the genome of bread wheat,and it is of great importance to identify the elite NRT genes for N-efficient wheat cultivar breeding.A candidate gene association study(CGAS)o... Multiple nitrate transporter(NRT)genes exist in the genome of bread wheat,and it is of great importance to identify the elite NRT genes for N-efficient wheat cultivar breeding.A candidate gene association study(CGAS)of six N use efficiency(NUE)related traits(grain N concentration(GNC),straw N concentration(SNC),grain yield(GY),grain N accumulation(GNA),shoot total N accumulation(STN)and N harvest index(NHI))was performed based on SNPs in 46 NRT2 genes using a panel composed of 286 wheat cultivars.CGAS identified TaNRT2.1-6B as an elite NRT gene that is significantly associated with four(NHI,SNC,GNA and GY)of the six NUE-related traits simultaneously.TaNRT2.1-6B is located on the plasma membrane and acts as a dual-affinity NRT.The overexpression of TaNRT2.1-6B increased the N influx and root growth of wheat,whereas gene silence lines resulted in the opposite effects.The overexpression of TaNRT2.1-6B also improved GY and N accumulation of wheat under either limited or sufficient N conditions.The data provide the TaNRT2.1-6B gene and the two associated SNP markers as promising powerful tools for breeding wheat cultivars with high N uptake ability and NUE. 展开更多
关键词 Candidate gene association study WHEAT TaNRT2.1-6B Dual-affinity transporter nitrogen use efficiency
下载PDF
Study on removal of nitrate nitrogen by Iron-Silver Alloy
13
作者 吴依玲 Liu Huaping +2 位作者 Zhu Huanzhi 聂兆广 Hu Yanfang 《石化技术》 CAS 2020年第3期47-48,共2页
With the rapid development of industry,a large number of wastewater discharged from factory production leads to a gradual increase in nitrate content in natural water.Using iron-silver copper alloy as reactant and cat... With the rapid development of industry,a large number of wastewater discharged from factory production leads to a gradual increase in nitrate content in natural water.Using iron-silver copper alloy as reactant and catalyst can effectively reduce the content of nitrate nitrogen in wastewater.The experimental results show that the loading rate of silver is 3% and pH is 2 at room temperature.The maximum removal rate of nitrate nitrogen is 91.09%. 展开更多
关键词 nitrate nitrogen iron-silver alloy DILUTE sulfuric acid SPECTROPHOTOMETRY
下载PDF
Effect of Different Nitrogen Fertilizer Types and Application Measures on Temporal and Spatial Variation of Soil Nitrate-Nitrogen at Cucumber Field
14
作者 Zhaopeng Ou Yang Xurong Mei +2 位作者 Fan Gao Yuzhong Li Jiaxuan Guo 《Journal of Environmental Protection》 2013年第1期129-135,共7页
Nitrate-nitrogen content of groundwater are ever-increasing in underneath vegetable growing areas, in this paper, based on field test of cucumber cultivated in Solar Greenhouse in North China, we study the effects of ... Nitrate-nitrogen content of groundwater are ever-increasing in underneath vegetable growing areas, in this paper, based on field test of cucumber cultivated in Solar Greenhouse in North China, we study the effects of different nitrogen fertilizer application levels (250, 300, 350kg/hm2) and different nitrogen fertilizer types (urea, urea + nitrification inhibitor, slow-release fertilizer) on temporal and spatial variation of soil nitrate-nitrogen content in different soil depth, soil nitrogen fertilizer retention and nitrogen use efficiency during cucumber growth period. The results show that, in the cases of nitrogen fertilizer types (urea and urea + nitrification inhibitor), for surface soil (0 - 40 cm soil depth), the temporal trend of soil nitrate-nitrogen content variation is similar: during the early stage of cucumber growth, soil nitrate-nitrogen content is relatively high;during the middle stage of cucumber growth, as nitrogen is constantly being absorbed by the vegetable, soil nitrate-nitrogen content decrease;during the late stage of cucumber growth, soil nitrate-nitrogen content increase, and increase more significantly when nitrification inhibitor is added in the fertilizer. For deep soil layer (40 - 100 cm depth), when only using urea, the temporal trend of soil nitrate-nitrogen content variation is that of continuous increase, when adding nitrification inhibitor, the temporal trend of soil nitrate-nitrogen content variation is that of insignificant increase. In the case of slow-release fertilizer, for both surface soil and deep soil layer, the temporal trend of soil nitrate-nitrogen content variation is that of continuous decrease. For all three types of nitrogen fertilizer, as fertilization level increase, soil nitrate-nitrogen content in various soil layers increase with it. In the case of fertilization at 300 kg/hm2 and 350 kg/hm2, adding nitrification inhibitor can increase soil retention of nitrogen fertilizer. This study suggests that adding nitrification inhibitors can increase soil retention of nitrogen fertilizer, decrease nitrate-nitrogen leaching downward, thereby reducing the pollution to groundwater. 展开更多
关键词 Solar GREENHOUSE CUCUMBER nitrate-nitrogen nitrogen RETENTION
下载PDF
Effect of Deficit Irrigation Practice on Nitrogen Mineralization and Nitrate Nitrogen Leaching under Semi-Arid Conditions
15
作者 Sarvet Jehan Muhammad Iqbal +3 位作者 Tayyaba Samreen Mehwish Liaquat Sehrish Kanwal Munaza Naseem 《Journal of Water Resource and Protection》 2022年第5期385-394,共10页
Agricultural sector acts as a major consumer of water which accounts for 70 percent of global freshwater use. Water scarcity acts as an imminent threat to agriculture, there is a need to use those irrigation and manag... Agricultural sector acts as a major consumer of water which accounts for 70 percent of global freshwater use. Water scarcity acts as an imminent threat to agriculture, there is a need to use those irrigation and management practices that could overcome this overwhelming situation of water scarcity. Lab incubation study was designed to evaluate the effect of different moisture levels (50%, 60%, 70%, 80%, 90%, and 100% FC) on nitrogen mineralization rate. Net nitrogen mineralization was shown at 60% and 80% FC levels. Two optimized irrigation levels (I<sub>0.6</sub> and I<sub>0.8</sub>) along with four levels of dairy manure (10, 15, 20, and 25 Mg ha<sup>-1</sup>) were used in a lysimetric trial. Nitrate-nitrogen was measured at four depths (D<sub>1</sub>: 30 cm, D<sub>2</sub>: 60 cm, D<sub>3</sub>: 90 cm, and D<sub>4</sub>: 120 cm). Results showed strong interaction of irrigation and dairy manure at all depths. Mean maximum nitrate-nitrogen concentration was shown under full irrigation at 120 cm soil depth with the application of DM &reg;25 Mg ha<sup>-1</sup>. Under two levels of deficit irrigation, I0.8 has shown maximum nitrate-nitrogen concentration at 90 cm soil depth with the application of DM25, however, deficit irrigation level I<sub>0.6</sub> restricted nitrate-nitrogen movement up to 60 cm soil depth, and high concentration was found at 30 cm soil depth. We concluded that deficit irrigation practice along with dairy manure resulted in more nitrate-nitrogen in the upper 60 cm layer of soil where it can be more available for the crops. 展开更多
关键词 Dairy Manure Deficit Irrigation nitrogen Mineralization nitrate-nitrogen Leaching
下载PDF
Nitrogen recovery and nitrate leaching of controlled release nitrogen fertilizer in irrigated paddy soil 被引量:3
16
作者 郑圣先 聂军 +1 位作者 戴平安 郑颖俊 《Agricultural Science & Technology》 CAS 2004年第3期2-10,共9页
Ordinary high nitrogen fertilizer often results in nitrate (NO3--N) leaching and low recovery. Microplot and field plot experiments were conducted to determine the effect of controlled release nitrogen fertilizer (CRN... Ordinary high nitrogen fertilizer often results in nitrate (NO3--N) leaching and low recovery. Microplot and field plot experiments were conducted to determine the effect of controlled release nitrogen fertilizer (CRNF) on reco very and nitrate leaching on paddy soils. During two early rice cropping seasons (2002 and 2003), a single basal application of CRNF at 90 kg N ha-1 increased grain yields by 7.7%to 11.6%compared with two applications of urea. Estimated by the difference method fertilizer N recovery of CRNF (mean 76.3%) was 38.9 pe rcentage point higher than that of urea (mean 37.4%); estimated by 15N isotope method (mean 49.6%) CRNF (mean 67.1%) was 35.9 percentage point higher than ur ea (mean 31.2%). NO3--N leaching losses were 9.19 and 6.70 kg ha-1 for urea and CRNF, respectively. NO3--N leaching during the early rice cropping season was 27.1 %lower from CRNF than from two applications of urea. These losses repr esent 10.2%and 7.4%of applied urea-N and CRNF-N. Results from this study ind icate that CRNF improves N recovery and reduces NO3--N leaching and increases rice yield. 展开更多
关键词 controlled release nitrogen fertilizer nitrogen recovery nitrate leaching rice yield
下载PDF
Effects of Nitrate on the Growth of Lateral Root and Nitrogen Absorption in Rice 被引量:14
17
作者 王小兵 吴平 +1 位作者 胡彬 陈青爽 《Acta Botanica Sinica》 CSCD 2002年第6期678-683,共6页
Lateral root is primary organ for plant to explore and utilize soil nutrient efficiently. The development of lateral roots (LR) is controlled by both genetic factors and nutrient status in environment. To investigate ... Lateral root is primary organ for plant to explore and utilize soil nutrient efficiently. The development of lateral roots (LR) is controlled by both genetic factors and nutrient status in environment. To investigate the effects of nitrate (NO3-) on rice lateral root growth and nitrogen (N) uptake efficiency under upland condition, three treatments, including root-split culture and whole plant culture in N sufficient and deficient conditions, were used in a vermiculite culture experiment. Root-split treatment showed that the growth of lateral roots was stimulated by localized nitrate supply. However, in whole plant culture, elongation of lateral roots was induced by NO3- deficiency. The effects of NO3- on rice lateral root growth were genotype-dependent. Similar N concentration, soluble sugar concentration and N content in shoot were observed in both root-split treatment and whole plant culture under NO3- sufficient condition, suggesting that the nitrogen requirement for rice normal growth could be satisfied with only half of roots supplied with NO3-. In the root-split treatment, N uptake was positively correlated with the average of lateral root length (ALRL) in NO3--supplied side, suggesting that the ALRL is important for rice root N uptake in the environment where the nitrogen nutrient is limiting factor. No significant correlation was observed between N uptake and ALRL in whole plant culture under N sufficient condition, which implies that the length of lateral roots may not be the main factor to determine tire rice root N uptake in nutrient-rich zone. Morphological and metabolic evidence in this study provided some prospects for genetic improvement of root system characters to improve the efficiency of nutrient absorption in rice. 展开更多
关键词 NO3- lateral root growth nitrogen absorption root-split treatment RICE
下载PDF
Suction Cup Samplers for Estimating Nitrate-Nitrogen in Soil Water in Irrigated Sugarbeet Production
18
作者 Jay D. Jabro William B. Stevens +2 位作者 William M. Iversen Brett L. Allen Upendra M. Sainju 《Journal of Environmental Protection》 2016年第10期1342-1354,共14页
Efforts have increased to measure nitrate losses from farmland under different management practices due to environmental and public concerns over levels of nitrate-nitrogen (NO<sub>3</sub>-N) in surface an... Efforts have increased to measure nitrate losses from farmland under different management practices due to environmental and public concerns over levels of nitrate-nitrogen (NO<sub>3</sub>-N) in surface and ground waters. This study evaluated the effect of conventional tillage (CT) and strip tillage (ST) practices and three N application rates on NO3-N concentrations in soil water at a 76 cm depth under irrigated sugarbeet (Beta vulgaris L.) in a clay loam soil. Nitrogen rates were applied as dry urea at 120, 150, 180 kg N ha-1</sup> in 2006;130, 160, 190 kg N ha-1 in 2007;and 110, 140, 170 kg N ha<sup>-1</sup> in 2008. Soil water volumes were measured weekly during each growing season using three ceramic suction cup samplers per plot placed at a 76 cm depth below the soil surface under each tillage. Results indicated that NO<sub>3</sub>-N concentrations at the 76 cm depth in the soil profile were not significantly affected by either tillage practice or by N application rate due to soil variability across the field and due to suction cup samplers’ biased estimate of soil water. The three N rates under CT and ST practices maintained NO<sub>3</sub>-N concentrations below the root zone to levels exceeding the 10 mg L<sup>-1</sup> safe drinking water maximum level in all three years. There were large variations in NO<sub>3</sub>-N concentrations among replicates within each tillage and N rate that were likely caused by variability in soil physical, hydraulic and chemical properties that impacted water movement through the soil profile, N dynamics and leaching below the root zone of sugarbeet. In conclusion, suction cup samplers are point water measurement devices that reveal considerable variability among replicates within each treatment due to the heterogeneity of field soils. Further, these samplers are not recommended in heterogeneous soils with preferential flow characteristics. 展开更多
关键词 Suction Cup Samplers nitrate-nitrogen SUGARBEET Strip Tillage Conventional Tillage
下载PDF
Nitrate Nitrogen Content Characteristics in Groundwater of Typical Planting Areas in Liao River Basin
19
作者 牛世伟 宫亮 +4 位作者 蔡广兴 何志刚 陈玥 刘子琪 隋世江 《Agricultural Science & Technology》 CAS 2016年第1期204-208,共5页
The contents of nitrate nitrogen(NO-3-N) in underground water from typical planting areas in Liao river basin were analyzed, so as to provide theoretical basis for rational fertilization and effectively prevent the ... The contents of nitrate nitrogen(NO-3-N) in underground water from typical planting areas in Liao river basin were analyzed, so as to provide theoretical basis for rational fertilization and effectively prevent the NO-3-N content from exceeding standard. The results showed that difference of the contents of NO-3-N in groundwater from different typical planting areas was significant. The highest content of NO-3-N in underground water was 37.4 mg/L from flower-growing region, then 22. 3 mg/L from maize-growing region, 21.9 mg/L from vegetable-growing region, and the lowest content of NO-3-N in underground water was 19.2 mg/L from rice-growing region. Except rice-growing region, the contents of NO-3-N in underground water of the samples in all planting areas were exceeding standard limit; potential health risk still existed in rice-growing region. Accordingly 12.5%-87.5%, 9.4%-75.5%, 17.9%-58.9% and 21.4%-96.0% of the samples were exceeding standard limit in maize growing region, rice-growing region, vegetable-growing region and flower-growing region. The contents of NO-3-N in under-groundwater before the rainy season was higher than that of NO-3-N in under-groundwater after the rainy season at the same depth of the well. 展开更多
关键词 Liao river basin Planting area Underground water nitrate nitrogen
下载PDF
Moving Dynamics of Nitrate Nitrogen in Soil of Maize Field on Meadow Soil of Daling River Valley in Liaoning and Its Fertilization Controlling
20
作者 刘慧颖 董环 +1 位作者 张鑫 韩晓日 《Agricultural Science & Technology》 CAS 2010年第9期121-125,共5页
The moving dynamics of nitrate nitrogen(NO3-N)in soil of maize field on meadow soil of Daling river valley in Liaoning and its rational fertilization controlling were discussed in this study by the designing of diff... The moving dynamics of nitrate nitrogen(NO3-N)in soil of maize field on meadow soil of Daling river valley in Liaoning and its rational fertilization controlling were discussed in this study by the designing of different kinds of N application methods.The results showed that the content of NO3-N in soil was increased with the amount of nitrogen fertilizer;At the same amount of nitrogen fertilizer,the content of NO3-N in soil showed a trend of chemical fertilizerstraw treatmentslow controlled release fertilizer.Based on the requirement of roots in different growth stages to nutrition,the migration directions of NO3-N could be regulated by each layer of soil.In the early growth stage,the NO3-N would move upward,while it moved downward in the late growth stage.Straw returning treatment could improve the keeping ability of soil to NO3-N and avoid the downward migration of NO3-N,as well as reduce the damage of groundwater pollution.The use of slow controlled release fertilizer had achieved the continuing releasing of nutrition.Moreover,the peak of nutrition releasing had been delayed for 30 d,which had met the requirement of nutrient supply in maturing stage.The yield of slow controlled release fertilizer treatment was the highest with the least accumulation of NO3-N and less negative influence on environment.The yield of straw returning treatment and chemical fertilizer treatment was closed to each other. 展开更多
关键词 Meadow soil Soil nitrate nitrogen Rational fertilization Daling River valley
下载PDF
上一页 1 2 138 下一页 到第
使用帮助 返回顶部