期刊文献+
共找到174,351篇文章
< 1 2 250 >
每页显示 20 50 100
Nitric oxide removal from flue gas coupled with the Fe^(Ⅱ)EDTA regeneration by ultraviolet irradiation
1
作者 Yuan Xu Ziwei Liu +5 位作者 Ying Dai Jinbo Ouyang Zhuyao Li Yuling Zhu Jianhua Ding Feiqiang He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期133-143,共11页
During wet complexation denitrification of flue gas,Fe^(Ⅱ)EDTA regeneration,also known as reducing Fe^(Ⅱ)EDTA and Fe^(Ⅱ)EDTA-nitric oxide(NO)to Fe^(Ⅱ)EDTA,is crucial.In this paper,ultraviolet(UV)light was used for... During wet complexation denitrification of flue gas,Fe^(Ⅱ)EDTA regeneration,also known as reducing Fe^(Ⅱ)EDTA and Fe^(Ⅱ)EDTA-nitric oxide(NO)to Fe^(Ⅱ)EDTA,is crucial.In this paper,ultraviolet(UV)light was used for the first time to reduce Fe^(Ⅱ)EDTA-NO.The experimental result demonstrated that Fe^(Ⅱ)EDTA-NO reduction rate increased with UV power increasing,elevated temperature,and initial Fe^(Ⅱ)EDTA-NO concentration decreasing.Fe^(Ⅱ)EDTA-NO reduction rate increased first and then decreased as pH value increased(2.0-10.0).Fe^(Ⅱ)EDTA-NO reduction with UV irradiation presented a first order reaction with respect to Fe^(Ⅱ)EDTA-NO.Compared with other Fe^(Ⅱ)EDTA regeneration methods,Fe^(Ⅱ)EDTA regeneration with UV show more superiority through comprehensive consideration of regeneration rate and procedure.Subsequently,NO absorption experiment by Fe^(Ⅱ)EDTA solution with UV irradiation confirmed that UV can significantly promote the NO removal performance of Fe^(Ⅱ)EDTA.Appropriate oxygen concentration(3%(vol))and acidic environment(pH=4)was favorable for NO removal.With UV power increasing as well as temperature decreasing,NO removal efficiency rose.In addition,the mechanism research indicates that NO from flue gas is mostly converted to NO_(2)-,NO_(3)-,NH_(4)^(+),N_(2),and N_(2)O with Fe^(Ⅱ)EDTA absorption liquid with UV irradiation.UV strengthens NO removal in Fe^(Ⅱ)EDTA absorption liquid by forming a synergistic effect of oxidation-reduction-complexation.Finally,compared with NO removal methods with Fe^(Ⅱ)EDTA,Fe^(Ⅱ)EDTA combined UV system shows prominent technology advantage in terms of economy and secondary pollution. 展开更多
关键词 Fe^(II)EDTA ULTRAVIOLET Flue gas nitric oxide REGENERATION Absorption
下载PDF
The emerging role of nitric oxide in the synaptic dysfunction of vascular dementia
2
作者 Xiaorong Zhang Zhiying Chen +3 位作者 Yinyi Xiong Qin Zhou Ling-Qiang Zhu Dan Liu 《Neural Regeneration Research》 SCIE CAS 2025年第2期402-415,共14页
With an increase in global aging,the number of people affected by cerebrovascular diseases is also increasing,and the incidence of vascular dementia-closely related to cerebrovascular risk-is increasing at an epidemic... With an increase in global aging,the number of people affected by cerebrovascular diseases is also increasing,and the incidence of vascular dementia-closely related to cerebrovascular risk-is increasing at an epidemic rate.However,few therapeutic options exist that can markedly improve the cognitive impairment and prognosis of vascular dementia patients.Similarly in Alzheimer’s disease and other neurological disorders,synaptic dysfunction is recognized as the main reason for cognitive decline.Nitric oxide is one of the ubiquitous gaseous cellular messengers involved in multiple physiological and pathological processes of the central nervous system.Recently,nitric oxide has been implicated in regulating synaptic plasticity and plays an important role in the pathogenesis of vascular dementia.This review introduces in detail the emerging role of nitric oxide in physiological and pathological states of vascular dementia and summarizes the diverse effects of nitric oxide on different aspects of synaptic dysfunction,neuroinflammation,oxidative stress,and blood-brain barrier dysfunction that underlie the progress of vascular dementia.Additionally,we propose that targeting the nitric oxide-sGC-cGMP pathway using certain specific approaches may provide a novel therapeutic strategy for vascular dementia. 展开更多
关键词 endoplasmic reticulum stress endothelial nitric oxide synthase gene therapy nitric oxide NO-sGC-cGMP pathway synaptic dysfunction vascular dementia
下载PDF
Elimination of methicillin‑resistant Staphylococcus aureus biofilms on titanium implants via photothermally‑triggered nitric oxide and immunotherapy for enhanced osseointegration
3
作者 Yong‑Lin Yu Jun‑Jie Wu +5 位作者 Chuan‑Chuan Lin Xian Qin Franklin R.Tay Li Miao Bai‑Long Tao Yang Jiao 《Military Medical Research》 SCIE CAS CSCD 2024年第2期157-179,共23页
Background:Treatment of methicillin-resistant Staphylococcus aureus(MRSA)biofilm infections in implant placement surgery is limited by the lack of antimicrobial activity of titanium(Ti)implants.There is a need to expl... Background:Treatment of methicillin-resistant Staphylococcus aureus(MRSA)biofilm infections in implant placement surgery is limited by the lack of antimicrobial activity of titanium(Ti)implants.There is a need to explore more effective approaches for the treatment of MRSA biofilm infections.Methods:Herein,an interfacial functionalization strategy is proposed by the integration of mesoporous polydopamine nanoparticles(PDA),nitric oxide(NO)release donor sodium nitroprusside(SNP)and osteogenic growth peptide(OGP)onto Ti implants,denoted as Ti-PDA@SNP-OGP.The physical and chemical properties of Ti-PDA@SNP-OGP were assessed by scanning electron microscopy,X-ray photoelectron spectroscope,water contact angle,photothermal property and NO release behavior.The synergistic antibacterial effect and elimination of the MRSA biofilms were evaluated by 2′,7′-dichlorofluorescein diacetate probe,1-N-phenylnaphthylamine assay,adenosine triphosphate intensity,O-nitrophenyl-β-D-galactopyranoside hydrolysis activity,bicinchoninic acid leakage.Fluorescence staining,assays for alkaline phosphatase activity,collagen secretion and extracellular matrix mineralization,quantitative real‑time reverse transcription‑polymerase chain reaction,and enzyme-linked immunosorbent assay(ELISA)were used to evaluate the inflammatory response and osteogenic ability in bone marrow stromal cells(MSCs),RAW264.7 cells and their co-culture system.Giemsa staining,ELISA,micro-CT,hematoxylin and eosin,Masson's trichrome and immunohistochemistry staining were used to evaluate the eradication of MRSA biofilms,inhibition of inflammatory response,and promotion of osseointegration of Ti-PDA@SNP-OGP in vivo.Results:Ti-PDA@SNP-OGP displayed a synergistic photothermal and NO-dependent antibacterial effect against MRSA following near-infrared light(NIR)irradiation,and effectively eliminated the formed MRSA biofilms by inducing reactive oxygen species(ROS)-mediated oxidative stress,destroying bacterial membrane integrity and causing leakage of intracellular components(P<0.01).In vitro experiments revealed that Ti-PDA@SNP-OGP not only facilitated osteogenic differentiation of MSCs,but also promoted the polarization of pro-inflammatory M1 macrophages to the anti-inflammatory M2-phenotype(P<0.05 or P<0.01).The favorable osteo-immune microenvironment further facilitated osteogenesis of MSCs and the anti-inflammation of RAW264.7 cells via multiple paracrine signaling pathways(P<0.01).In vivo evaluation confirmed the aforementioned results and revealed that Ti-PDA@SNP-OGP induced ameliorative osseointegration in an MRSA-infected femoral defect implantation model(P<0.01).Conclusions:Ti-PDA@SNP-OGP is a promising multi-functional material for the high-efficient treatment of MRSA infections in implant replacement surgeries. 展开更多
关键词 Polydopamine nanoparticles Methicillin-resistant Staphylococcus aureus nitric oxide OSSEOINTEGRATION Osteo-immunomodulation Photothermal effect Titanium implants
下载PDF
Carbon Monoxide Modulates Auxin Transport and Nitric Oxide Signaling in Plants under Iron Deficiency Stress
4
作者 Kaiyue Hong Yasmina Radani +2 位作者 Waqas Ahmad Ping Li Yuming Luo 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第1期45-61,共17页
Carbon monoxide(CO)and nitric oxide(NO)are signal molecules that enhance plant adaptation to environmental stimuli.Auxin is an essential phytohormone for plant growth and development.CO and NO play crucial roles in mo... Carbon monoxide(CO)and nitric oxide(NO)are signal molecules that enhance plant adaptation to environmental stimuli.Auxin is an essential phytohormone for plant growth and development.CO and NO play crucial roles in modulating the plant’s response to iron deficiency.Iron deficiency leads to an increase in the activity of heme oxygenase(HO)and the subsequent generation of CO.Additionally,it alters the polar subcellular distribution of Pin-Formed 1(PIN1)proteins,resulting in enhanced auxin transport.This alteration,in turn,leads to an increase in NO accumulation.Furthermore,iron deficiency enhances the activity of ferric chelate reductase(FCR),as well as the expression of the Fer-like iron deficiency-induced transcription factor 1(FIT)and the ferric reduction oxidase 2(FRO2)genes in plant roots.Overexpression of the long hypocotyl 1(HY1)gene,which encodes heme oxygenase,or the CO donor treatment resulted in enhanced basipetal auxin transport,higher FCR activity,and the expression of FIT and FRO2 genes under Fe deficiency.Here,a potential mechanism is proposed:CO and NO interact with auxin to address iron deficiency stress.CO alters auxin transport,enhancing its accumulation in roots and up-regulating key iron-related genes like FRO2 and IRT1.Elevated auxin levels affect NO signaling,leading to greater sensitivity in root development.This interplay promotes FCR activity,which is crucial for iron absorption.Together,these molecules enhance iron uptake and root growth,revealing a novel aspect of plant physiology in adapting to environmental stress. 展开更多
关键词 Carbon monoxide nitric oxide AUXIN iron deficiency signal molecule PLANTS
下载PDF
Operation room nursing based on humanized nursing mode combined with nitric oxide on rehabilitation effect after lung surgery
5
作者 Qiao-Li Wang Zhi-Bo Wang Jin-Fu Zhu 《World Journal of Clinical Cases》 SCIE 2024年第18期3368-3377,共10页
BACKGROUND With advancements in the diagnosis and treatment of lung diseases,lung segment surgery has become increasingly common.Postoperative rehabilitation is critical for patient recovery,yet challenges such as com... BACKGROUND With advancements in the diagnosis and treatment of lung diseases,lung segment surgery has become increasingly common.Postoperative rehabilitation is critical for patient recovery,yet challenges such as complications and adverse outcomes persist.Incorporating humanized nursing modes and novel treatments like nitric oxide inhalation may enhance recovery and reduce postoperative complications.AIM To evaluate the effects of a humanized nursing mode combined with nitric oxide inhalation on the rehabilitation outcomes of patients undergoing lung surgery,focusing on pulmonary function,recovery speed,and overall treatment costs.METHODS A total of 79 patients who underwent lung surgery at a tertiary hospital from March 2021 to December 2021 were divided into a control group(n=39)receiving a routine nursing program and an experimental group(n=40)receiving additional humanized nursing interventions and atomized inhalation of nitric oxide.Key indicators were compared between the two groups alongside an analysis of treatment costs.RESULTS The experimental group demonstrated significant improvements in pulmonary function,reduced average recovery time,and lower total treatment costs compared to the control group.Moreover,the quality of life in the experimental group was significantly better in the 3 months post-surgery,indicating a more effective rehabilitation process.CONCLUSION The combination of humanized nursing mode and nitric oxide inhalation in postoperative care for lung surgery patients significantly enhances pulmonary rehabilitation outcomes,accelerates recovery,and reduces economic burden.This approach offers a promising reference for improving patient care and rehabilitation efficiency following lung surgery. 展开更多
关键词 Humanized nursing nitric oxide Lung segment surgery REHABILITATION Pulmonary function
下载PDF
Targeting the nitric oxide/cGMP signaling pathway to treat chronic pain 被引量:5
6
作者 Dan-Yang Li Shao-Jie Gao +6 位作者 Jia Sun Long-Qing Zhang Jia-Yi Wu Fan-He Song Dai-Qiang Liu Ya-Qun Zhou Wei Mei 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第5期996-1003,共8页
Nitric oxide(NO)/cyclic guanosine 3′,5′-monophosphate(cGMP) signaling has been shown to act as a mediator involved in pain transmission and processing. In this review, we summarize and discuss the mechanisms of the ... Nitric oxide(NO)/cyclic guanosine 3′,5′-monophosphate(cGMP) signaling has been shown to act as a mediator involved in pain transmission and processing. In this review, we summarize and discuss the mechanisms of the NO/cGMP signaling pathway involved in chronic pain, including neuropathic pain, bone cancer pain, inflammatory pain, and morphine tolerance. The main process in the NO/cGMP signaling pathway in cells involves NO activating soluble guanylate cyclase, which leads to subsequent production of cGMP. cGMP then activates cGMP-dependent protein kinase(PKG), resulting in the activation of multiple targets such as the opening of ATP-sensitive K+ channels. The activation of NO/cGMP signaling in the spinal cord evidently induces upregulation of downstream molecules, as well as reactive astrogliosis and microglial polarization which participate in the process of chronic pain. In dorsal root ganglion neurons, natriuretic peptide binds to particulate guanylyl cyclase, generating and further activating the cGMP/PKG pathway, and it also contributes to the development of chronic pain. Upregulation of multiple receptors is involved in activation of the NO/cGMP signaling pathway in various pain models. Notably the NO/cGMP signaling pathway induces expression of downstream effectors, exerting both algesic and analgesic effects in neuropathic pain and inflammatory pain. These findings suggest that activation of NO/cGMP signaling plays a constituent role in the development of chronic pain, and this signaling pathway with dual effects is an interesting and promising target for chronic pain therapy. 展开更多
关键词 bone cancer pain chronic pain cyclic GMP dorsal root ganglion inflammatory pain morphine tolerance neuropathic pain nitric oxide protein kinase G spinal cord
下载PDF
Layered Potassium Titanium Niobate/Reduced Graphene Oxide Nanocomposite as a Potassium‑Ion Battery Anode 被引量:4
7
作者 Charlie A.F.Nason Ajay Piriya Vijaya Kumar Saroja +3 位作者 Yi Lu Runzhe Wei Yupei Han Yang Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期1-16,共16页
With graphite currently leading as the most viable anode for potassium-ion batteries(KIBs),other materials have been left relatively underexamined.Transition metal oxides are among these,with many positive attributes ... With graphite currently leading as the most viable anode for potassium-ion batteries(KIBs),other materials have been left relatively underexamined.Transition metal oxides are among these,with many positive attributes such as synthetic maturity,longterm cycling stability and fast redox kinetics.Therefore,to address this research deficiency we report herein a layered potassium titanium niobate KTiNbO5(KTNO)and its rGO nanocomposite(KTNO/rGO)synthesised via solvothermal methods as a high-performance anode for KIBs.Through effective distribution across the electrically conductive rGO,the electrochemical performance of the KTNO nanoparticles was enhanced.The potassium storage performance of the KTNO/rGO was demonstrated by its first charge capacity of 128.1 mAh g^(−1) and reversible capacity of 97.5 mAh g^(−1) after 500 cycles at 20 mA g^(−1),retaining 76.1%of the initial capacity,with an exceptional rate performance of 54.2 mAh g^(−1)at 1 A g^(−1).Furthermore,to investigate the attributes of KTNO in-situ XRD was performed,indicating a low-strain material.Ex-situ X-ray photoelectron spectra further investigated the mechanism of charge storage,with the titanium showing greater redox reversibility than the niobium.This work suggests this lowstrain nature is a highly advantageous property and well worth regarding KTNO as a promising anode for future high-performance KIBs. 展开更多
关键词 Potassium-ion batteries INTERCALATION Transition metal oxides Anodes NANOCOMPOSITE
下载PDF
Metformin promotes angiogenesis and functional recovery in aged mice after spinal cord injury by adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway 被引量:3
8
作者 Jin-Yun Zhao Xiao-Long Sheng +7 位作者 Cheng-Jun Li Tian Qin Run-Dong He Guo-Yu Dai Yong Cao Hong-Bin Lu Chun-Yue Duan Jian-Zhong Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第7期1553-1562,共10页
Treatment with metformin can lead to the recovery of pleiotropic biological activities after spinal cord injury.However,its effect on spinal cord injury in aged mice remains unclear.Considering the essential role of a... Treatment with metformin can lead to the recovery of pleiotropic biological activities after spinal cord injury.However,its effect on spinal cord injury in aged mice remains unclear.Considering the essential role of angiogenesis during the regeneration process,we hypothesized that metformin activates the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway in endothelial cells,thereby promoting microvascular regeneration in aged mice after spinal cord injury.In this study,we established young and aged mouse models of contusive spinal cord injury using a modified Allen method.We found that aging hindered the recovery of neurological function and the formation of blood vessels in the spinal cord.Treatment with metformin promoted spinal cord microvascular endothelial cell migration and blood vessel formation in vitro.Furthermore,intraperitoneal injection of metformin in an in vivo model promoted endothelial cell proliferation and increased the density of new blood vessels in the spinal cord,thereby improving neurological function.The role of metformin was reversed by compound C,an adenosine monophosphate-activated protein kinase inhibitor,both in vivo and in vitro,suggesting that the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway likely regulates metformin-mediated angiogenesis after spinal cord injury.These findings suggest that metformin promotes vascular regeneration in the injured spinal cord by activating the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway,thereby improving the neurological function of aged mice after spinal cord injury. 展开更多
关键词 adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway ANGIOGENESIS aged mice compound C METFORMIN spinal cord injury
下载PDF
Neuronal nitric oxide synthase/reactive oxygen species pathway is involved in apoptosis and pyroptosis in epilepsy 被引量:2
9
作者 Xiao-Xue Xu Rui-Xue Shi +11 位作者 Yu Fu Jia-Lu Wang Xin Tong Shi-Qi Zhang Na Wang Mei-Xuan Li Yu Tong Wei Wang Miao He Bing-Yang Liu Gui-Lan Chen Feng Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1277-1285,共9页
Dysfunction of neuronal nitric oxide synthase contributes to neurotoxicity,which triggers cell death in various neuropathological diseases,including epilepsy.Studies have shown that inhibition of neuronal nitric oxide... Dysfunction of neuronal nitric oxide synthase contributes to neurotoxicity,which triggers cell death in various neuropathological diseases,including epilepsy.Studies have shown that inhibition of neuronal nitric oxide synthase activity increases the epilepsy threshold,that is,has an anticonvulsant effect.However,the exact role and potential mechanism of neuronal nitric oxide synthase in seizures are still unclear.In this study,we performed RNA sequencing,functional enrichment analysis,and weighted gene coexpression network analysis of the hippocampus of tremor rats,a rat model of genetic epilepsy.We found damaged hippocampal mitochondria and abnormal succinate dehydrogenase level and Na+-K+-ATPase activity.In addition,we used a pilocarpine-induced N2a cell model to mimic epileptic injury.After application of neuronal nitric oxide synthase inhibitor 7-nitroindazole,changes in malondialdehyde,lactate dehydrogenase and superoxide dismutase,which are associated with oxidative stress,were reversed,and the increase in reactive oxygen species level was reversed by 7-nitroindazole or reactive oxygen species inhibitor N-acetylcysteine.Application of 7-nitroindazole or N-acetylcysteine downregulated the expression of caspase-3 and cytochrome c and reversed the apoptosis of epileptic cells.Furthermore,7-nitroindazole or N-acetylcysteine downregulated the abnormally high expression of NLRP3,gasdermin-D,interleukin-1βand interleukin-18.This indicated that 7-nitroindazole and N-acetylcysteine each reversed epileptic cell death.Taken together,our findings suggest that the neuronal nitric oxide synthase/reactive oxygen species pathway is involved in pyroptosis of epileptic cells,and inhibiting neuronal nitric oxide synthase activity or its induced oxidative stress may play a neuroprotective role in epilepsy. 展开更多
关键词 APOPTOSIS bioinformatics analysis cell death EPILEPSY nitric oxide synthase oxidative stress PYROPTOSIS RNA sequencing Tremor rat weighted gene co-expression network analysis
下载PDF
High‑Entropy Layered Oxide Cathode Enabling High‑Rate for Solid‑State Sodium‑Ion Batteries 被引量:3
10
作者 Tianxun Cai Mingzhi Cai +5 位作者 Jinxiao Mu Siwei Zhao Hui Bi Wei Zhao Wujie Dong Fuqiang Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期160-171,共12页
Na-ion O3-type layered oxides are prospective cathodes for Na-ion batteries due to high energy density and low-cost.Nevertheless,such cathodes usually suffer from phase transitions,sluggish kinetics and air instabilit... Na-ion O3-type layered oxides are prospective cathodes for Na-ion batteries due to high energy density and low-cost.Nevertheless,such cathodes usually suffer from phase transitions,sluggish kinetics and air instability,making it difficult to achieve high performance solid-state sodium-ion batteries.Herein,the high-entropy design and Li doping strategy alleviate lattice stress and enhance ionic conductivity,achieving high-rate performance,air stability and electrochemically thermal stability for Na_(0.95)Li_(0.06)Ni_(0.25)Cu_(0.05)Fe_(0.15)Mn_(0.49)O_(2).This cathode delivers a high reversible capacity(141 mAh g^(−1)at 0.2C),excellent rate capability(111 mAh g^(−1)at 8C,85 mAh g^(−1)even at 20C),and long-term stability(over 85%capacity retention after 1000 cycles),which is attributed to a rapid and reversible O3–P3 phase transition in regions of low voltage and suppresses phase transition.Moreover,the compound remains unchanged over seven days and keeps thermal stability until 279℃.Remarkably,the polymer solid-state sodium battery assembled by this cathode provides a capacity of 92 mAh g^(−1)at 5C and keeps retention of 96%after 400 cycles.This strategy inspires more rational designs and could be applied to a series of O3 cathodes to improve the performance of solid-state Na-ion batteries. 展开更多
关键词 High-entropy High-rate performance Li-TM interaction Air stability O3 layered oxide cathode
下载PDF
Recent progresses in the development of tubular segmented-in-series solid oxide fuel cells:Experimental and numerical study 被引量:2
11
作者 Shuo Han Tao Wei +6 位作者 Sijia Wang Yanlong Zhu Xingtong Guo Liang He Xiongzhuang Li Qing Huang Daifen Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期427-442,共16页
Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs s... Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs suffer from having a higher volume,current leakage,complex connections,and difficulty in gas sealing.To solve these problems,Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support,resulting in the tubular segmented-in-series solid oxide fuel cells(SIS-SOFCs),which achieved higher output voltage.This work systematically reviews recent advances in the structures,preparation methods,perform-ances,and stability of tubular SIS-SOFCs in experimental and numerical studies.Finally,the challenges and future development of tubular SIS-SOFCs are also discussed.The findings of this work can help guide the direction and inspire innovation of future development in this field. 展开更多
关键词 solid oxide fuel cell SEGMENTED-IN-SERIES TUBULAR experimental study numerical study
下载PDF
Laser‑Induced and MOF‑Derived Metal Oxide/Carbon Composite for Synergistically Improved Ethanol Sensing at Room temperature 被引量:1
12
作者 Hyeongtae Lim Hyeokjin Kwon +2 位作者 Hongki Kang Jae Eun Jang Hyuk‑Jun Kwon 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期210-220,共11页
Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing... Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing performance.However,previous methods of synthesizing MO_(x)/C composites suffer from problems,including inhomogeneity,aggregation,and challenges in micropatterning.Herein,we introduce a refined method that employs a metal–organic framework(MOF)as a precursor combined with direct laser writing.The inherent structure of MOFs ensures a uniform distribution of metal ions and organic linkers,yielding homogeneous MO_(x)/C structures.The laser processing facilitates precise micropatterning(<2μm,comparable to typical photolithography)of the MO_(x)/C crystals.The optimized MOF-derived MO_(x)/C sensor rapidly detected ethanol gas even at room temperature(105 and 18 s for response and recovery,respectively),with a broad range of sensing performance from 170 to 3,400 ppm and a high response value of up to 3,500%.Additionally,this sensor exhibited enhanced stability and thermal resilience compared to previous MOF-based counterparts.This research opens up promising avenues for practical applications in MOF-derived sensing devices. 展开更多
关键词 Metal-organic frameworks Metal oxide Carbon composite LASER Gas sensor
下载PDF
Facile synthesis of Cu-doped manganese oxide octahedral molecular sieve for the efficient degradation of sulfamethoxazole via peroxymonosulfate activation 被引量:1
13
作者 Yuhua Qiu Yingping Huang +2 位作者 Yanlan Wang Xiang Liu Di Huang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2770-2780,共11页
Advanced processes for peroxymonosulfate(PMS)-based oxidation are efficient in eliminating toxic and refractory organic pol-lutants from sewage.The activation of electron-withdrawing HSO_(5)^(-)releases reactive speci... Advanced processes for peroxymonosulfate(PMS)-based oxidation are efficient in eliminating toxic and refractory organic pol-lutants from sewage.The activation of electron-withdrawing HSO_(5)^(-)releases reactive species,including sulfate radical(·SO_(4)^(-)),hydroxyl radical(·OH),superoxide radical(·O_(2)^(-)),and singlet oxygen(1O_(2)),which can induce the degradation of organic contaminants.In this work,we synthesized a variety of M-OMS-2 nanorods(M=Co,Ni,Cu,Fe)by doping Co^(2+),Ni^(2+),Cu^(2+),or Fe^(3+)into manganese oxide oc-tahedral molecular sieve(OMS-2)to efficiently remove sulfamethoxazole(SMX)via PMS activation.The catalytic performance of M-OMS-2 in SMX elimination via PMS activation was assessed.The nanorods obtained in decreasing order of SMX removal rate were Cu-OMS-2(96.40%),Co-OMS-2(88.00%),Ni-OMS-2(87.20%),Fe-OMS-2(35.00%),and OMS-2(33.50%).Then,the kinetics and struc-ture-activity relationship of the M-OMS-2 nanorods during the elimination of SMX were investigated.The feasible mechanism underly-ing SMX degradation by the Cu-OMS-2/PMS system was further investigated with a quenching experiment,high-resolution mass spec-troscopy,and electron paramagnetic resonance.Results showed that SMX degradation efficiency was enhanced in seawater and tap water,demonstrating the potential application of Cu-OMS-2/PMS system in sewage treatment. 展开更多
关键词 SULFAMETHOXAZOLE manganese oxide octahedral molecular sieve PEROXYMONOSULFATE sewage treatment COPPER
下载PDF
Advancements,strategies,and prospects of solid oxide electrolysis cells(SOECs):Towards enhanced performance and large-scale sustainable hydrogen production 被引量:1
14
作者 Amina Lahrichi Youness El Issmaeli +1 位作者 Shankara S.Kalanur Bruno G.Pollet 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期688-715,共28页
Solid oxide electrolysis cells(SOECs)represent a crucial stride toward sustainable hydrogen generation,and this review explores their current scientific challenges,significant advancements,and potential for large-scal... Solid oxide electrolysis cells(SOECs)represent a crucial stride toward sustainable hydrogen generation,and this review explores their current scientific challenges,significant advancements,and potential for large-scale hydrogen production.In SOEC technology,the application of innovative fabrication tech-niques,doping strategies,and advanced materials has enhanced the performance and durability of these systems,although degradation challenges persist,implicating the prime focus for future advancements.Here we provide in-depth analysis of the recent developments in SOEC technology,including Oxygen-SOECs,Proton-SOECs,and Hybrid-SOECs.Specifically,Hybrid-SOECs,with their mixed ionic conducting electrolytes,demonstrate superior efficiency and the concurrent production of hydrogen and oxygen.Coupled with the capacity to harness waste heat,these advancements in SOEC technology present signif-icant promise for pilot-scale applications in industries.The review also highlights remarkable achieve-ments and potential reductions in capital expenditure for future SOEC systems,while elaborating on the micro and macro aspects of sOECs with an emphasis on ongoing research for optimization and scal-ability.It concludes with the potential of SOEC technology to meet various industrial energy needs and its significant contribution considering the key research priorities to tackle the global energy demands,ful-fillment,and decarbonization efforts. 展开更多
关键词 Solid oxide electrolysis cells Proton-SOECs Oxygen-SoECs Hybrid-SOECs Intermediate-high temperature electrolysers Hydrogenproduction
下载PDF
From concept to commercialization:A review of tubular solid oxide fuel cell technology 被引量:1
15
作者 Ruyan Chen Yuan Gao +4 位作者 Jiutao Gao Huiyu Zhang Martin Motola Muhammad Bilal Hanif Cheng-Xin Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期79-109,I0003,共32页
The reduced sealing difficulty of tubular solid oxide fuel cells(SOFCs)makes the stacking of tubular cell groups relatively easy,and the thermal stress constraints during stack operation are smaller,which helps the st... The reduced sealing difficulty of tubular solid oxide fuel cells(SOFCs)makes the stacking of tubular cell groups relatively easy,and the thermal stress constraints during stack operation are smaller,which helps the stack to operate stably for a long time.The special design of tubular SOFC structures can completely solve the problem of high-temperature sealing,especially in the design of multiple single-cell series integrated into one tube,where each cell tube is equivalent to a small electric stack,with unique characteristics of high voltage and low current output,which can significantly reduce the ohmic polarization loss of tubular cells.This paper provides an overview of typical tubular SOFC structural designs both domestically and internationally.Based on the geometric structure of tubular SOFCs,they can be divided into bamboo tubes,bamboo flat tubes,single-section tubes,and single-section flat tube structures.Meanwhile,this article provides an overview of commonly used materials and preparation methods for tubular SOFCs,including commonly used materials and preparation methods for support and functional layers,as well as a comparison of commonly used preparation methods for microtubule SOFCs,It introduced the three most important parts of building a fuel cell stack:manifold,current collector,and ceramic adhesive,and also provided a detailed introduction to the power generation systems of different tubular SOFCs,Finally,the development prospects of tubular SOFCs were discussed. 展开更多
关键词 Tubular solid oxide fuel cell Support material Geometric structure Preparation methods STACK
下载PDF
Phase-engineering modulation of Mn-based oxide cathode for constructing super-stable sodium storage 被引量:1
16
作者 Quanqing Zhao Ruru Wang +5 位作者 Ming Gao Bolin Liu Jianfeng Jia Haishun Wu Youqi Zhu Chuanbao Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期421-427,I0010,共8页
The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by ... The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by the sluggish Na^(+)kinetics and the phase transitions upon cycling.Herein,we establish the thermodynamically stable phase diagram of various Mn-based oxide composites precisely controlled by sodium content tailoring strategy coupling with co-doping and solid-state reaction.The chemical environment of the P2/P'3 and P2/P3 biphasic composites indicate that the charge compensation mechanism stems from the cooperative contribution of anions and cations.Benefiting from the no phase transition to scavenge the structure strain,P2/P'3 electrode can deliver long cycling stability(capacity retention of 73.8%after 1000 cycles at 10 C)and outstanding rate properties(the discharge capacity of 84.08 mA h g^(-1)at 20 C)than P2/P3 electrode.Furthermore,the DFT calculation demonstrates that the introducing novel P'3 phase can significantly regulate the Na^(+)reaction dynamics and modify the local electron configuration of Mn.The effective phase engineering can provide a reference for designing other high-performance electrode materials for Na-ion batteries. 展开更多
关键词 Sodium ion battery oxide cathode Phase engineering Phase diagram Na~+kinetic
下载PDF
Porous metal oxides in the role of electrochemical CO_(2) reduction reaction 被引量:1
17
作者 Ziqi Zhang Jinyun Xu +9 位作者 Yu Zhang Liping Zhao Ming Li Guoqiang Zhong Di Zhao Minjing Li Xudong Hu Wenju Zhu Chunming Zheng Xiaohong Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期373-398,I0009,共27页
The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous me... The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous metal oxide materials in the electrocatalytic reduction of CO_(2)(CO_(2)RR).The focus is on the development of robust and selective catalysts,particularly metal and metal-oxide-based materials.Porous metal oxides offer high surface area,enhancing the accessibility to active sites and improving reaction kinetics.The tunability of these materials allows for tailored catalytic behavior,targeting optimized reaction mechanisms for CO_(2)RR.The work also discusses the various synthesis strategies and identifies key structural and compositional features,addressing challenges like high overpotential,poor selectivity,and low stability.Based on these insights,we suggest avenues for future research on porous metal oxide materials for electrochemical CO_(2) reduction. 展开更多
关键词 CO_(2)reduction Carbon dioxide TRANSFORMATION Porous metal oxides ELECTROCATALYSIS
下载PDF
Boron-doped high-entropy oxide toward high-rate and long-cycle layered cathodes for wide-temperature sodium-ion batteries 被引量:1
18
作者 Yuzhen Dang Zhe Xu +8 位作者 Yurong Wu Runguo Zheng Zhiyuan Wang Xiaopin Lin Yanguo Liu Zheng-Yao Li Kai Sun Dongfeng Chen Dan Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期577-587,I0012,共12页
03-type layered metal oxides hold great promise for sodium-ion batteries cathodes owing to their energy density advantage.However,the severe irreversible phase transition and sluggish Na^(+)diffusion kinetics pose sig... 03-type layered metal oxides hold great promise for sodium-ion batteries cathodes owing to their energy density advantage.However,the severe irreversible phase transition and sluggish Na^(+)diffusion kinetics pose significant challenges to achieve high-performance layered cathodes.Herein,a boron-doped03-type high entropy oxide Na(Fe_(0.2)Co_(0.15)Cu_(0.05)Ni_(0.2)Mn_(0.2)Ti_(0.2))B_(0.02)O_(2)(NFCCNMT-B_(0.02))is designed and the covalent B-O bonds with high entropy configuration ensure a robust layered structure.The obtained cathode NFCCNMT-B_(0.02)exhibits impressive cycling performance(capacity retention of 95%and 82%after100 cycles and 300 cycles at 1 and 10 C,respectively)and outstanding rate capability(capacity of 83 mAh g^(-1)at 10 C).Furthermore,the NFCCNMT-B_(0.02)demonstrates a superior wide-temperature performance,maintaining the same capacity level(113,4 mAh g^(-1)@-20℃,121 mAh g^(-1)@25℃,and 119 mAh g^(-1)@60℃)and superior cycle stability(90%capacity retention after 100 cycles at 1 C at-20℃).The high-entropy configuration design with boron doping strategy contributes to the excellent sodium-ion storage performance.The high-entropy configuration design effectively suppresses irreversible phase transitions accompanied by small volume changes(ΔV=0.65 A3).B ions doping expands the Na layer distance and enlarges the P3 phase region,thereby enhancing Na^(+)diffusion kinetics.This work offers valuable insights into design of high-performance layered cathodes for sodium-ion batteries operating across a wide temperature. 展开更多
关键词 High entropy oxide Born substitution Phase transition Na~+diffusion kinetics Sodium-ion batteries
下载PDF
Enhancing the stability of Ni Fe-layered double hydroxide nanosheet array for alkaline seawater oxidation by Ce doping 被引量:1
19
作者 Yongchao Yao Shengjun Sun +14 位作者 Hui Zhang Zixiao Li Chaoxin Yang Zhengwei Cai Xun He Kai Dong Yonglan Luo Yan Wang Yuchun Ren Qian Liu Dongdong Zheng Weihua Zhuang Bo Tang Xuping Sun Wenchuang(Walter)Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期306-312,共7页
Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability cau... Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability caused by detrimental chlorine chemistry.Herein,we present our recent discovery that the incorporation of Ce into Ni Fe layered double hydroxide nanosheet array on Ni foam(Ce-Ni Fe LDH/NF)emerges as a robust electrocatalyst for seawater oxidation.During the seawater oxidation process,CeO_(2)is generated,effectively repelling Cl^(-)and inhibiting the formation of Cl O-,resulting in a notable enhancement in the oxidation activity and stability of alkaline seawater.The prepared Ce-Ni Fe LDH/NF requires only overpotential of 390 m V to achieve the current density of 1 A cm^(-2),while maintaining long-term stability for 500 h,outperforming the performance of Ni Fe LDH/NF(430 m V,150 h)by a significant margin.This study highlights the effectiveness of a Ce-doping strategy in augmenting the activity and stability of materials based on Ni Fe LDH in seawater electrolysis for oxygen evolution. 展开更多
关键词 Ce doping NiFe layered double hydroxide Seawater oxidation Electrocatalysis Cl^(-) repulsion
下载PDF
Boosting oxygen reduction activity and CO_(2) resistance on bismuth ferrite-based perovskite cathode for low-temperature solid oxide fuel cells below 600℃ 被引量:1
20
作者 Juntao Gao Zhiyun Wei +5 位作者 Mengke Yuan Zhe Wang Zhe Lü Qiang Li Lingling Xu Bo Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期600-609,I0013,共11页
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)... Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs. 展开更多
关键词 Low-temperature solid oxide fuel cell Perovskite cathode DFT calculations CO_(2) tolerance
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部