Objective C1q/TNF-related protein(CTRP)1 was initiallyidentified as a paralog of adiponectin based on the similarity in C1q domain of these two proteins.Previously,we showed that CTRP1promotes the development of ather...Objective C1q/TNF-related protein(CTRP)1 was initiallyidentified as a paralog of adiponectin based on the similarity in C1q domain of these two proteins.Previously,we showed that CTRP1promotes the development of atherosclerosis by increasing endothelial adhesiveness.Here,we sought to investigate whether CTRP1 also influences vascular dilatory functions.展开更多
AIM: To study the effects of aminoguanidine (AG) and two L-arginine analogues N(omega)-nitro-L-arginine methyl ester (L-NAME) and N(omega)-nitro-L-arginine (L-NNA) on nitric oxide (NO) production induced by cytokines ...AIM: To study the effects of aminoguanidine (AG) and two L-arginine analogues N(omega)-nitro-L-arginine methyl ester (L-NAME) and N(omega)-nitro-L-arginine (L-NNA) on nitric oxide (NO) production induced by cytokines (TNF-alpha, IL-1 beta, and IFN-gamma) and bacterial lipopolysaccharide (LPS) mixture (CM) in the cultured rat hepatocytes, and examine their mechanisms action. METHODS: Rat hepatocytes were incubated with AG, L-NAME, L-NNA, Actinomycin D (ActD) and dexamethasone in a medium containing CM (LPS plus TNF-alpha, IL-1 beta, and IFN-gamma) for 24h. NO production in the cultured supernatant was measured with the Griess reaction. Intracellular cGMP level was detected with radioimmunoassy. RESULTS: NO production was markedly blocked by AG and L-NAME in a dose-dependent manner under inflammatory stimuli condition triggered by CM in vitro. The rate of the maximum inhibitory effects of L-NAME (38.9%) was less potent than that obtained with AG(53.7%, P 【 0.05). There was no significant difference between the inhibitory effects of AG and two L-arginine analogues on intracellular cGMP accumulation in rat cultured hepatocytes. Non-specific NOS expression inhibitor dexamethasone (DEX)and iNOS mRNA transcriptional inhibitor ActD also significantly inhibited CM-induced NO production. AG(0.1 mmol x L(-1)) and ActD (0.2 ng x L(-1)) were equipotent in decreasing NO production induced by inflammatory stimuli in vitro, and both effects were more potent than that induced by non-selectivity NOS activity inhibitor L-NAME (0.1 mmol x L(-1)) under similar stimuli conditions (P【0.01). CONCLUSION: AG is a potent selective inhibitor of inducible isoform of NOS,and the mechanism of action may be not only competitive inhibition in the substrate level, but also the gene expression level in rat hepatocytes.展开更多
Objective: Endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) have been implicated in protection against myocardial ischemia injury. This study was designed to explore a new method of therapy for myoc...Objective: Endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) have been implicated in protection against myocardial ischemia injury. This study was designed to explore a new method of therapy for myocardial injury by eNOS gene transfection. Methods: A rat model of myocardial infarction (MI) was established by left anterior descending (LAD) coronary artery ligation, eNOS gene in an adenovirus vector was delivered locally into the rat heart and hemodynamic parameters were examined after 3 weeks, Matrix metalloproteinase-2 and 9 (MMP-2, MMP-9) mRNA were measured by reverse transcription polymerase chain reaction (RT-PCR), and the protein levels of eNOS, caspase-3, and transforming grouth factor 131 (TGF-131) were determined by western blot assay. Results: eNOS gene transfer significantly reduced cardiomyocyte apoptosis and improved cardiac function. In addition, eNOS significantly reduced the mRNA levels of MMP-2 and MMP-9. In the eNOS gene transfected group, the activation of caspase-3 and TGF-β1 were decreased. However, the protection was reversed by administration of the NOS inhibitor, N(o))-nitro-l-arginine methyl ester (L-NAME). Conclusion: These results demonstrate that the eNOS provides cardiac protection after myocardial infarction injury through inhibition of cardiac apoptosis and collagen deposition, and suppression of TGF-β1.展开更多
目的观察磷脂酰肌醇-3激酶(PI3K)-蛋白质丝氨酸/苏氨酸激酶(AKt)-内皮型一氧化氮合酶(e NOS)信号转导通路在硫化氢(H2S)抑制内皮素-1(endothelin-1,ET-1)诱导心肌肥大过程中的作用。方法体外培养原代心肌细胞,将其随机分为6组,每组4孔,...目的观察磷脂酰肌醇-3激酶(PI3K)-蛋白质丝氨酸/苏氨酸激酶(AKt)-内皮型一氧化氮合酶(e NOS)信号转导通路在硫化氢(H2S)抑制内皮素-1(endothelin-1,ET-1)诱导心肌肥大过程中的作用。方法体外培养原代心肌细胞,将其随机分为6组,每组4孔,1对照组:加入等体积无血清的DMEM培养基;2肥大(ET-1)组:加入终浓度为10-8 mol/L的ET-1;剩余4组为实验组,各组分别加入不同终浓度的H2S供体-Na HS:310-15 M Na HS组:加入10-15 mol/L Na HS+10-8 mol/l ET-1;410-14 M Na HS组:加入10-14 mol/L Na HS+10-8 mol/L ET-1;510-13 M Na HS组:加入10-13 mol/L Na HS+10-8 mol/L ET-1;610-12 M Na HS组:加入10-12 mol/L Na HS+10-8 mol/L ET-1。上述各组药物分别刺激24 h后测定心肌细胞表面积、细胞总蛋白含量、培养液NO含量,RT-PCR检测心肌细胞心房利钠肽(atrial natriuretic peptide,ANP)、脑钠肽(B-type natriuretic peptide,BNP)、磷脂酰肌醇-3激酶(phosphatidylinositol-3-kinase,PI3K)、蛋白激酶B(protein kinase B,PKB/AKt)、e NOS m RNA水平,Western Blot技术检测总AKt和磷酸化AKt蛋白表达含量。结果肥大(ET-1)组的心肌细胞表面积(1933.80±143.06)和细胞总蛋白含量(367.51±25.9)均高于对照组(787.27±107.66,218.55±21.28,P<0.05),ANP及BNP m RNA的表达量也明显增加(P<0.05),但PI3K、AKt、e NOS m RNA表达水平,磷酸化AKt程度和NO的释放量(4.60±0.73)低于对照组(8.63±0.30,P<0.05),各实验组给予不同浓度Na HS刺激后能够浓度依赖性的抑制这种肥大效应(P<0.05),同时上调了PI3K/AKt/e NOS通路各信号分子的表达量(P<0.05)。结论 H2S对ET-1诱导的心肌肥大有一定的抑制作用,这种作用可能与激活PI3K-AKt-e NOS信号通路有关。展开更多
文摘Objective C1q/TNF-related protein(CTRP)1 was initiallyidentified as a paralog of adiponectin based on the similarity in C1q domain of these two proteins.Previously,we showed that CTRP1promotes the development of atherosclerosis by increasing endothelial adhesiveness.Here,we sought to investigate whether CTRP1 also influences vascular dilatory functions.
基金Project supported by the National Natural Science Foundation of China,No.39770861.and JANSSEN Science Research Foundation.
文摘AIM: To study the effects of aminoguanidine (AG) and two L-arginine analogues N(omega)-nitro-L-arginine methyl ester (L-NAME) and N(omega)-nitro-L-arginine (L-NNA) on nitric oxide (NO) production induced by cytokines (TNF-alpha, IL-1 beta, and IFN-gamma) and bacterial lipopolysaccharide (LPS) mixture (CM) in the cultured rat hepatocytes, and examine their mechanisms action. METHODS: Rat hepatocytes were incubated with AG, L-NAME, L-NNA, Actinomycin D (ActD) and dexamethasone in a medium containing CM (LPS plus TNF-alpha, IL-1 beta, and IFN-gamma) for 24h. NO production in the cultured supernatant was measured with the Griess reaction. Intracellular cGMP level was detected with radioimmunoassy. RESULTS: NO production was markedly blocked by AG and L-NAME in a dose-dependent manner under inflammatory stimuli condition triggered by CM in vitro. The rate of the maximum inhibitory effects of L-NAME (38.9%) was less potent than that obtained with AG(53.7%, P 【 0.05). There was no significant difference between the inhibitory effects of AG and two L-arginine analogues on intracellular cGMP accumulation in rat cultured hepatocytes. Non-specific NOS expression inhibitor dexamethasone (DEX)and iNOS mRNA transcriptional inhibitor ActD also significantly inhibited CM-induced NO production. AG(0.1 mmol x L(-1)) and ActD (0.2 ng x L(-1)) were equipotent in decreasing NO production induced by inflammatory stimuli in vitro, and both effects were more potent than that induced by non-selectivity NOS activity inhibitor L-NAME (0.1 mmol x L(-1)) under similar stimuli conditions (P【0.01). CONCLUSION: AG is a potent selective inhibitor of inducible isoform of NOS,and the mechanism of action may be not only competitive inhibition in the substrate level, but also the gene expression level in rat hepatocytes.
文摘Objective: Endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) have been implicated in protection against myocardial ischemia injury. This study was designed to explore a new method of therapy for myocardial injury by eNOS gene transfection. Methods: A rat model of myocardial infarction (MI) was established by left anterior descending (LAD) coronary artery ligation, eNOS gene in an adenovirus vector was delivered locally into the rat heart and hemodynamic parameters were examined after 3 weeks, Matrix metalloproteinase-2 and 9 (MMP-2, MMP-9) mRNA were measured by reverse transcription polymerase chain reaction (RT-PCR), and the protein levels of eNOS, caspase-3, and transforming grouth factor 131 (TGF-131) were determined by western blot assay. Results: eNOS gene transfer significantly reduced cardiomyocyte apoptosis and improved cardiac function. In addition, eNOS significantly reduced the mRNA levels of MMP-2 and MMP-9. In the eNOS gene transfected group, the activation of caspase-3 and TGF-β1 were decreased. However, the protection was reversed by administration of the NOS inhibitor, N(o))-nitro-l-arginine methyl ester (L-NAME). Conclusion: These results demonstrate that the eNOS provides cardiac protection after myocardial infarction injury through inhibition of cardiac apoptosis and collagen deposition, and suppression of TGF-β1.
文摘目的观察磷脂酰肌醇-3激酶(PI3K)-蛋白质丝氨酸/苏氨酸激酶(AKt)-内皮型一氧化氮合酶(e NOS)信号转导通路在硫化氢(H2S)抑制内皮素-1(endothelin-1,ET-1)诱导心肌肥大过程中的作用。方法体外培养原代心肌细胞,将其随机分为6组,每组4孔,1对照组:加入等体积无血清的DMEM培养基;2肥大(ET-1)组:加入终浓度为10-8 mol/L的ET-1;剩余4组为实验组,各组分别加入不同终浓度的H2S供体-Na HS:310-15 M Na HS组:加入10-15 mol/L Na HS+10-8 mol/l ET-1;410-14 M Na HS组:加入10-14 mol/L Na HS+10-8 mol/L ET-1;510-13 M Na HS组:加入10-13 mol/L Na HS+10-8 mol/L ET-1;610-12 M Na HS组:加入10-12 mol/L Na HS+10-8 mol/L ET-1。上述各组药物分别刺激24 h后测定心肌细胞表面积、细胞总蛋白含量、培养液NO含量,RT-PCR检测心肌细胞心房利钠肽(atrial natriuretic peptide,ANP)、脑钠肽(B-type natriuretic peptide,BNP)、磷脂酰肌醇-3激酶(phosphatidylinositol-3-kinase,PI3K)、蛋白激酶B(protein kinase B,PKB/AKt)、e NOS m RNA水平,Western Blot技术检测总AKt和磷酸化AKt蛋白表达含量。结果肥大(ET-1)组的心肌细胞表面积(1933.80±143.06)和细胞总蛋白含量(367.51±25.9)均高于对照组(787.27±107.66,218.55±21.28,P<0.05),ANP及BNP m RNA的表达量也明显增加(P<0.05),但PI3K、AKt、e NOS m RNA表达水平,磷酸化AKt程度和NO的释放量(4.60±0.73)低于对照组(8.63±0.30,P<0.05),各实验组给予不同浓度Na HS刺激后能够浓度依赖性的抑制这种肥大效应(P<0.05),同时上调了PI3K/AKt/e NOS通路各信号分子的表达量(P<0.05)。结论 H2S对ET-1诱导的心肌肥大有一定的抑制作用,这种作用可能与激活PI3K-AKt-e NOS信号通路有关。