期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Metformin promotes angiogenesis and functional recovery in aged mice after spinal cord injury by adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway 被引量:2
1
作者 Jin-Yun Zhao Xiao-Long Sheng +7 位作者 Cheng-Jun Li Tian Qin Run-Dong He Guo-Yu Dai Yong Cao Hong-Bin Lu Chun-Yue Duan Jian-Zhong Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第7期1553-1562,共10页
Treatment with metformin can lead to the recovery of pleiotropic biological activities after spinal cord injury.However,its effect on spinal cord injury in aged mice remains unclear.Considering the essential role of a... Treatment with metformin can lead to the recovery of pleiotropic biological activities after spinal cord injury.However,its effect on spinal cord injury in aged mice remains unclear.Considering the essential role of angiogenesis during the regeneration process,we hypothesized that metformin activates the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway in endothelial cells,thereby promoting microvascular regeneration in aged mice after spinal cord injury.In this study,we established young and aged mouse models of contusive spinal cord injury using a modified Allen method.We found that aging hindered the recovery of neurological function and the formation of blood vessels in the spinal cord.Treatment with metformin promoted spinal cord microvascular endothelial cell migration and blood vessel formation in vitro.Furthermore,intraperitoneal injection of metformin in an in vivo model promoted endothelial cell proliferation and increased the density of new blood vessels in the spinal cord,thereby improving neurological function.The role of metformin was reversed by compound C,an adenosine monophosphate-activated protein kinase inhibitor,both in vivo and in vitro,suggesting that the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway likely regulates metformin-mediated angiogenesis after spinal cord injury.These findings suggest that metformin promotes vascular regeneration in the injured spinal cord by activating the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway,thereby improving the neurological function of aged mice after spinal cord injury. 展开更多
关键词 adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway ANGIOGENESIS aged mice compound C METFORMIN spinal cord injury
下载PDF
Ramulus Cinnamomi extract attenuates neuroinflammatory responses via downregulating TLR4/MyD88 signaling pathway in BV2 cells 被引量:5
2
作者 Huan Yang Xiao Cheng +2 位作者 Ying-lin Yang Yue-hua Wang Guan-hua Du 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第11期1860-1864,共5页
Ramulus Cinnamomi(RC), a traditional Chinese herb, has been used to attenuate inflammatory responses. The purpose of this study was to investigate the effect of RC extract on lipopolysaccharide(LPS)-induced neuroinfla... Ramulus Cinnamomi(RC), a traditional Chinese herb, has been used to attenuate inflammatory responses. The purpose of this study was to investigate the effect of RC extract on lipopolysaccharide(LPS)-induced neuroinflammation in BV2 microglial cells and the underlying mechanisms involved. BV2 cells were incubated with normal medium(control group), LPS, LPS plus 30 μg/m L RC extract, or LPS plus 100 μg/m L RC extract. The BV2 cell morphology was observed under an optical microscope and cell viability was detected by MTT assay. Nitric oxide level in BV2 cells was detected using Griess regents, and the levels of interleukin-6, interleukin-1β, and tumor necrosis factor α in BV2 cells were determined by ELISA. The expression levels of cyclooxygenase-2, Toll-like receptor 4 and myeloid differentiation factor 88 proteins were detected by western blot assay. Compared with the LPS group, both 30 and 100 μg/mL RC extract had no significant effect on the viability of BV2 cells. The levels of nitric oxide, interleukin-6, interleukin-1β and tumor necrosis factor α in BV2 cells were all significantly increased after LPS induction, and the levels were significantly reversed after treatment with 30 and 100 μg/mL RC extract. Furthermore, RC extract significantly inhibited the protein expression levels of cyclooxygenase-2, Toll-like receptor 4 and myeloid differentiation factor 88 in LPS-induced BV2 cells. Our findings suggest that RC extract alleviates neuroinflammation by downregulating the TLR4/My D88 signaling pathway. 展开更多
关键词 nerve regeneration Ramulus Cinnamomi BV2 cells LIPOPOLYSACCHARIDE NEUROINFLAMMATION pro-inflammatory factors TLR4/My D88 signaling pathway nitric oxide INTERLEUKIN-6 INTERLEUKIN-1Β tumor necrosis factor α neuronal regeneration
下载PDF
The emerging role of nitric oxide in the synaptic dysfunction of vascular dementia
3
作者 Xiaorong Zhang Zhiying Chen +3 位作者 Yinyi Xiong Qin Zhou Ling-Qiang Zhu Dan Liu 《Neural Regeneration Research》 SCIE CAS 2025年第2期402-415,共14页
With an increase in global aging,the number of people affected by cerebrovascular diseases is also increasing,and the incidence of vascular dementia-closely related to cerebrovascular risk-is increasing at an epidemic... With an increase in global aging,the number of people affected by cerebrovascular diseases is also increasing,and the incidence of vascular dementia-closely related to cerebrovascular risk-is increasing at an epidemic rate.However,few therapeutic options exist that can markedly improve the cognitive impairment and prognosis of vascular dementia patients.Similarly in Alzheimer’s disease and other neurological disorders,synaptic dysfunction is recognized as the main reason for cognitive decline.Nitric oxide is one of the ubiquitous gaseous cellular messengers involved in multiple physiological and pathological processes of the central nervous system.Recently,nitric oxide has been implicated in regulating synaptic plasticity and plays an important role in the pathogenesis of vascular dementia.This review introduces in detail the emerging role of nitric oxide in physiological and pathological states of vascular dementia and summarizes the diverse effects of nitric oxide on different aspects of synaptic dysfunction,neuroinflammation,oxidative stress,and blood-brain barrier dysfunction that underlie the progress of vascular dementia.Additionally,we propose that targeting the nitric oxide-sGC-cGMP pathway using certain specific approaches may provide a novel therapeutic strategy for vascular dementia. 展开更多
关键词 endoplasmic reticulum stress endothelial nitric oxide synthase gene therapy nitric oxide NO-sGC-cGMP pathway synaptic dysfunction vascular dementia
下载PDF
The Effect of YiQiFuMai on Ischemic Heart Failure by Improve Myocardial Microcirculation and Increase eNOS and VEGF Expression 被引量:2
4
作者 Shuren Li Xiao Hao +1 位作者 Sa Xiao Liying Xun 《International Journal of Clinical Medicine》 2020年第2期84-100,共17页
Objective: To assess the effects of traditional Chinese medicine YiQiFuMai on cardiac function during the progression of ischemic heart failure. Methods: Rabbits were divided into sham, heart failure, and YiQiFuMai gr... Objective: To assess the effects of traditional Chinese medicine YiQiFuMai on cardiac function during the progression of ischemic heart failure. Methods: Rabbits were divided into sham, heart failure, and YiQiFuMai groups. The ischemic heart failure model was established in New Zealand white rabbits, which were intraperitoneally injected with YiQiFuMai injection and 0.9% sodium chloride after the operation. After six weeks, cardiac function was examined by ultrasound;serum BNP levels were measured by ELISA;p-AKT, eNOS, ICAM-1 and VEGF levels were evaluated by real-time PCR and Western-Blot;pathological changes of the myocardial tissue were observed by H&E staining;CD31 expression in tissue samples was analyzed by immunohistochemistry. The ultrastructure and microcirculation of myocardial tissue specimens from the three groups were assessed by transmission electron microscopy. Results: YiQiFuMai decreased serum BNP levels, and increased LVEF and reduced LVEDD at 6 weeks postoperatively. In addition, YiQiFuMai can improve myocardial damage and microcirculation structure, as assessed by histology and transmission electron microscope. At the molecular level, treatment with YiQiFuMai resulted in increased eNOS, VEGF and p-AKT levels but reduced ICAM-1 amounts compared with the heart failure group. Conclusion: Ischemic heart failure damages the microvascular structure and functions of the myocardium. Treatment with YiQiFuMai potentially ameliorates microcirculatory damage and alleviates cardiac failure by improving endothelial function and angiogenesis, and inhibiting inflammatory cell adhesion. 展开更多
关键词 ENDOTHELIAL nitric Oxide SYNTHASE (eNOS) ENDOTHELIAL Cells PI3K/AKT/eNOS pathway MICROCIRCULATION Heart Failure YiQiFuMai
下载PDF
Differential effects of nitric oxide on rod and cone pathways in carp retina
5
作者 叶冰 杜久林 杨雄里 《Science China(Life Sciences)》 SCIE CAS 1997年第1期71-78,共8页
The effects of nitric oxide (NO) on electroretinograms and light responses of horizontal cells intra-cellularly recorded from isolated, superfused carp retinas were studied. Sodium nitroprusside (SNP), an NO donor, su... The effects of nitric oxide (NO) on electroretinograms and light responses of horizontal cells intra-cellularly recorded from isolated, superfused carp retinas were studied. Sodium nitroprusside (SNP), an NO donor, suppressed scotopic b wave, while enhancing photopic b wave, and the effects could be blocked by hemoglobin, an NO chelator. Furthermore, following SNP application, light responses of rod horizontal cells were reduced in size and those of cone horizontal cells were increased. These results suggest that NO suppresses the activity of rod pathway, but enhances that of cone pathway in the outer retina. Moreover, the effects of methylene blue, an inhibitor of soluble guanylate cyclase, on rod and cone horizontal cells were just opposite to those of SNP, implying that the effects of NO may be mediated by cGMP. 展开更多
关键词 nitric oxide ROD pathway CONE pathway ELECTRORETINOGRAM (ERG) horizontal cell.
原文传递
Nitric oxide synthase/nitric oxide pathway mediates intussusception pathogenesis in rats
6
作者 王平 刘宝富 +3 位作者 欧和生 佟利家 杨军 唐朝枢 《Chinese Medical Journal》 SCIE CAS CSCD 1999年第11期57-60,共4页
关键词 INTUSSUSCEPTION ·pathogenesis ·nitric oxide SYNTHASE ·pathway
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部