Recent experimental advancements reported a chemical reaction between antimony and nitrogen under high temperature and high pressure,yielding crystalline antimony nitride(Sb_(3)N_(5))with an orthorhombic structure.Mot...Recent experimental advancements reported a chemical reaction between antimony and nitrogen under high temperature and high pressure,yielding crystalline antimony nitride(Sb_(3)N_(5))with an orthorhombic structure.Motivated by this statement,we calculate the stability,elastic properties,electronic properties and energy density of the Cmc2_(1) structure for pnictogen nitrides X_(3)N_(5)(X=P,As,Sb,and Bi)using first-principles calculations combined with particle swarm optimization algorithms.Calculations of formation enthalpies,elastic constants and phonon spectra show that P_(3)N_(5),As_(3)N_(5) and Sb_(3)N_(5) are thermodynamically,mechanically and kinetically stable at 35 GPa,whereas Bi_(3)N_(5) is mechanically and kinetically stable but thermodynamically unstable.The computed electronic density of states shows strong covalent bonding between the N atoms and the phosphorus group atoms in the four compounds,confirmed by the calculated electronic localization function.We also calculate the energy densities for Sb_(3)N_(5) and find it to be a potentially high-energy-density material.展开更多
A series of carbon nitride(CN)materials represented by graphitic carbon nitride(g-C_(3)N_(4))have been widely used in bioimaging,biosensing,and other fields in recent years due to their nontoxicity,low cost,and high l...A series of carbon nitride(CN)materials represented by graphitic carbon nitride(g-C_(3)N_(4))have been widely used in bioimaging,biosensing,and other fields in recent years due to their nontoxicity,low cost,and high luminescent quantum efficiency.What is more attractive is that the luminescent properties such as wavelength and intensity can be regulated by controlling the structure at the molecular level.Hence,it is time to summarize the related research on CN structural evolution and make a prospect on future developments.In this review,we first summarize the research history and multiple structural evolution of CN.Then,the progress of improving the luminescence performance of CN through structural evolution was discussed.Significantly,the relationship between CN structure evolution and energy conversion in the forms of photoluminescence,chemiluminescence,and electrochemiluminescence was reviewed.Finally,key challenges and opportunities such as nanoscale dispersion strategy,luminous efficiency improving methods,standardization evaluation,and macroscopic preparation of CN are highlighted.展开更多
Multi-phase nitrides bonded silicon carbide lintel blocks were prepared using industrial SiC(SiC≥98 mass%,3-0.5,≤0.5 and≤0.044 mm),Si powder(Si≥98 mass%,≤0.044 mm),and SiO2 micropowder(SiO2≥96 mass%,d50=0.15 pm)...Multi-phase nitrides bonded silicon carbide lintel blocks were prepared using industrial SiC(SiC≥98 mass%,3-0.5,≤0.5 and≤0.044 mm),Si powder(Si≥98 mass%,≤0.044 mm),and SiO2 micropowder(SiO2≥96 mass%,d50=0.15 pm)as raw materials,and calcium lignosulfonate as the additive,batching,mixing,and molding on a vibration pressure molding machine,drying and then firing at 1420℃for 10 h in high-purity N2.The apparent porosity,the bulk density,the cold modulus of rupture,the hot modulus of rupture,and the linear expansion coefficient of the samples were tested.The phase composition and the microstructure of the samples at different nitriding depths(50,100,and 150 mm)were analyzed by XRD and SEM.The field application effects of the blocks were studied.The results show that:(1)the multi-phase nitrides bonded silicon carbide refractories can dynamically adjust their own phase composition and minimize structural and thermal stresses,improving the service life of key parts of dry quenching furnaces;(2)calcium lignosulfonate can improve the nitriding micro-environment of multi-phase nitrides bonded silicon carbide lintel blocks,successfully increasing the effective nitriding thickness of the blocks to 300 mm;(3)Sinosteel LI RR provides a unique concept in the design of materials and block types as well as the stable and scientific overall structure,promoting the industrialization process of dry quenching furnaces with long service life in China.展开更多
A series of monometallic nitrides and bimetallic nitrides were prepared by temperature-programmed reaction with NH3. The effects of Co, Ni and Fe additives and the synergic action between Fe, Co, Ni and Mo on the amm...A series of monometallic nitrides and bimetallic nitrides were prepared by temperature-programmed reaction with NH3. The effects of Co, Ni and Fe additives and the synergic action between Fe, Co, Ni and Mo on the ammonia decomposition activity were investigated. TPR-MS, XRD were also carried out to obtain better insight into the structure of the bimetallic nitride. The results of ammonia decomposition activity show that bimetallic nitrides are more active than monometallic nitrides or bimetallic oxides.展开更多
Co and Mo bimetallic nitrides supported on Mg(Al)O, MgO and γ-Al2O3 were prepared in temperatureprogrammed reactions with NH3. The surface morphology, chemical composition and catalytic activity for NH3 decompositi...Co and Mo bimetallic nitrides supported on Mg(Al)O, MgO and γ-Al2O3 were prepared in temperatureprogrammed reactions with NH3. The surface morphology, chemical composition and catalytic activity for NH3 decomposition on the supported Co and Mo bimetallic nitrides were studied by X-ray diffractometer (XRD), NH3 temperature-programmed desorption and mass spectrometer (NH3-TPD-MS), temperature-programmed desorption and mass spectrometer (TPD-MS), H2 temperature-programmed surface reaction (H2-TPSR) and activity test. The phases of Co3Mo3N and MoN could be formed on Mg(Al)O, MgO and Al2O3 during the nitridation, and they might be more uniformly dispersed on Mg(Al)O and MgO than on γ-Al2O3. Transition metallic nitrides are generally considered as potential catalysts for hydrogen-involving reactions due to the entrance of hydrogen atoms into subsurface and the lattice of metallic nitrides. The diffusion of nitrogen in the bulk and the structure transformation of Co and Mo nitride compounds occur during NH3-TPD, but the supported Co and Mo bimetallic nitrides are not easily reduced at H2 atmosphere. Co3Mo3N/Mg(Al)O catalyst exhibits the highest activity, while Co3Mo3N/Al2O3 exhibits the lowest activity for NH3 decomposition. Furthermore, the catalytic activity of Co and Mo bimetallic nitrides is not only much higher than that of supported single metallic nitride, but also highly dependent upon the surface acidity and BET surface area of support.展开更多
Faraday pseudocapacitors take both advantages of secondary battery with high energy density and supercapacitors with high power density,and electrode material is the key to determine the performance of Faraday pseudoc...Faraday pseudocapacitors take both advantages of secondary battery with high energy density and supercapacitors with high power density,and electrode material is the key to determine the performance of Faraday pseudocapacitors.Transition metal oxides and nitrides,as the two main kinds of pseudocapacitor electrode materials,can enhance energy density while maintaining high power capability.Recent advances in designing nanostructured architectures and preparing composites with high specific surface areas based on transition metal oxides and nitrides,including ruthenium oxides,nickel oxides,manganese oxides,vanadium oxides,cobalt oxides,iridium oxides,titanium nitrides,vanadium nitrides,molybdenum nitrides and niobium nitrides,are addressed,which would provide important significances for deep researches on pseudocapacitor electrode materials.展开更多
A series of transition metal nitrides(MxNy,M=Fe,Co,Ni)nanoparticle(NP)composites caged in N-doped hollow porous carbon sphere(NHPCS)were prepared by impregnation and heat treatment methods.These composites combine the...A series of transition metal nitrides(MxNy,M=Fe,Co,Ni)nanoparticle(NP)composites caged in N-doped hollow porous carbon sphere(NHPCS)were prepared by impregnation and heat treatment methods.These composites combine the high catalytic activity of nitrides and the high-efficiency mass transfer characteristics of NHPCS.The oxygen reduction reaction results indicate that Fe2N/NHPCS has the synergistic catalytic performance of higher onset potential(0.96 V),higher electron transfer number(~4)and higher limited current density(1.4 times as high as that of commercial Pt/C).In addition,this material is implemented as the air catalyst for zinc−air battery that exhibits considerable specific capacity(795.1 mA·h/g)comparable to that of Pt/C,higher durability and maximum power density(173.1 mW/cm2).展开更多
Oxidation of carbon is the main problem or Al2O3 - C refractories. ZrO2 - nitrides composite powder was synthesized through carbothermal reduction and nitridation (CRN) of zircon. The effect of ZrO2 - nitrides compo...Oxidation of carbon is the main problem or Al2O3 - C refractories. ZrO2 - nitrides composite powder was synthesized through carbothermal reduction and nitridation (CRN) of zircon. The effect of ZrO2 - nitrides composite powder addition on oxidation resistance of the Al2O3 - C refractories was investigated by measuring the thickness of oxidation layer. Phase compositions of the Al2O3 - C refractories before and after oxidation were investigated by X-ray diffraction ( XRD ). Results show that the oxidation resistance of the Al2O3 - C refractories can be obviously improved by adding the synthesized ZrO2 - nitrides composite powder. The formation of mullite and zircon in the oxidation layer results in the densification of oxidation layer, which prevents oxygen diffusion and bnproves the oxidation resistance of the Al2O3 - C refractories.展开更多
The carbides/nitrides precipitates in ferrite grains, on grain boundaries and dislocations were investigated on a hot-rolled C-Mn strip (0.16wt%C-1.22wt%Mn-0.022wt%Ti) produced by the CSP (compact strip production...The carbides/nitrides precipitates in ferrite grains, on grain boundaries and dislocations were investigated on a hot-rolled C-Mn strip (0.16wt%C-1.22wt%Mn-0.022wt%Ti) produced by the CSP (compact strip production) technology using TEM and X-ray energy dispersive spectroscopy. The Pickering's equation for the contribution of precipitates to the yield stress was also discussed. It is shown that there are numerous fine and dispersive precipitates TiC in the ferrite grains, on the grain boundaries and dislocations. Also there are a small amount of coarser Ti(C, N) particles and TiC particles associated with MnS. Precipitation strengthening on steels produced by the CSP technology is significant.展开更多
Zn-air batteries(ZABs),especially the secondary batteries,have engrossed a great interest because of its high specific energy,economical and high safety.However,due to the insufficient activity and stability of bifunc...Zn-air batteries(ZABs),especially the secondary batteries,have engrossed a great interest because of its high specific energy,economical and high safety.However,due to the insufficient activity and stability of bifunctional electrocatalysts for air-cathode oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)processes,the practical application of rechargeable ZABs is seriously hindered.In the effort of developing high active,stable and cost-effective electrocatalysts,transition metal nitrides(TMNs)have been regarded as the candidates due to their high conductivity,strong corrosion-resistance,and bifunctional catalytic performance.In this paper,the research progress in TMNs-based material as ORR and OER electrocatalysts for ZABs is discussed with respect to their synthesis,chemical/physical characterization,and performance validation/optimization.The surface/interface nanoengineering strategies such as defect engineering,support binding,heteroatom introduction,crystal plane orientation,interface construction and small size effect,the physical and chemical properties of TMNs-based electrocatalysts are emphasized with respect to their structures/morphologies,composition,electrical conductivity,specific surface area,chemical stability and corrosion resistance.The challenges of TMNs-based materials as bifunctional air-cathode electrocatalysts in practical application are evaluated,and numerous research guidelines to solve these problems are put forward for facilitating further research and development.展开更多
In this article the plasma-chemical synthesis of nanosized powders (nitrides, car- bides, oxides, carbon nanotubes and fullerenes) is reviewed. Nanosized powders - nitrides, carbides, oxides, carbon nanotubes and fu...In this article the plasma-chemical synthesis of nanosized powders (nitrides, car- bides, oxides, carbon nanotubes and fullerenes) is reviewed. Nanosized powders - nitrides, carbides, oxides, carbon nanotubes and fullerenes have been successfully produced using different techniques, technological apparatuses and conditions for their plasma-chemical synthesis.展开更多
Ⅲ-nitride semiconductor materials have excellent optoelectronic properties,mechanical properties,and chemical stability,which have important applications in the field of optoelectronics and microelectronics.Two-dimen...Ⅲ-nitride semiconductor materials have excellent optoelectronic properties,mechanical properties,and chemical stability,which have important applications in the field of optoelectronics and microelectronics.Two-dimensional(2D)materials have been widely focused in recent years due to their peculiar properties.With the property of weak bonding between layers of 2D materials,the growth ofⅢ-nitrides on 2D materials has been proposed to solve the mismatch problem caused by heterogeneous epitaxy and to develop substrate stripping techniques to obtain high-quality,low-cost nitride materials for high-quality nitride devices and their extension in the field of flexible devices.In this progress report,the main methods for the preparation of 2D materials,and the recent progress and applications of different techniques for the growth ofⅢ-nitrides based on 2D materials are reviewed.展开更多
Raman spectra of amorphous carbon nitride films (a-C:N) resemble those of typical amorphous carbon (a-C), and no specific features in the spectra are shown due to N doping. The present work provides a correlation...Raman spectra of amorphous carbon nitride films (a-C:N) resemble those of typical amorphous carbon (a-C), and no specific features in the spectra are shown due to N doping. The present work provides a correlation between the microstructure and vibrational properties of a-C:N films from first principles. The six periodic model structures of 64 atoms with various mass densities and nitrogen contents are generated by the liquid-quench method using Car-Parinello molecular dynamics. By using Raman coupling tensors calculated with the finite electric field method, Raman spectra are obtained. The calculated results show that the vibrations of C=N could directly contribute to the Raman spectrum. The similarity of the Raman line shapes of N-doped and N-free amorphous carbons is due to the overlapping of C=N and C=C vibration bands. In addition, the origin of characteristic Raman peaks is also given.展开更多
The group Ⅲ nitrides are an important class of materials with aplications in UV and visible optoelectronics,high temperature electronics,cold cathodes and solar blind detectors.In recent years,with the realisation of...The group Ⅲ nitrides are an important class of materials with aplications in UV and visible optoelectronics,high temperature electronics,cold cathodes and solar blind detectors.In recent years,with the realisation of nitride based LEDs,the use of GaN IED has the potential to compete with 1raditional filament and discharge lamps,for the provision of white lighting,and there has been an explosion of interest in the MOCVD growth of GaN based materials with an increasing focus on large area multiwafer reactors and wafer uniforrmity.This paper will review the design philosophy and characteristics of close-coupled showerhead reactors,relating these to the requirements of group Ⅲ-nitride growth,and will present a selection of data resulting from the operation of such equipment.These results suggest that the close coupled showerhead style of reactor is very suitable for the growth of GaN based structures in both research and production environments.展开更多
The nitrides of transient metals have a high hardness, thermal stability, remarkable wear resistance in aggressive chemical mediums, melted metals and alloys, high corrosion resistance, and low coefficient of electric...The nitrides of transient metals have a high hardness, thermal stability, remarkable wear resistance in aggressive chemical mediums, melted metals and alloys, high corrosion resistance, and low coefficient of electric resistance. Under the conditions of low-temperature argon plasma (LTP), thermodynamic investigations were conducted in the process of obtaining of A1N, TiN and Si3N4 in a temperature range of 1000 K to 6000 K. To investigate the thermodynamic possibility of obtaining nitrides, a computer model was used which provided the equilibrium composition of gaseous and solid phases at different temperatures. The conditions for chemical equilibrium of the system were based on the minimization of Gibbs' energy.展开更多
Vanadium molybdenum oxynitrides nanoparticles were synthesized successfully in the channels of MCM-41 after surface modification,vacumm co-impregnation and nitridation technology.The products were investigated by nitr...Vanadium molybdenum oxynitrides nanoparticles were synthesized successfully in the channels of MCM-41 after surface modification,vacumm co-impregnation and nitridation technology.The products were investigated by nitrogen sorption measurement,X-ray powder diffraction(XRD),high-resolution transmission electron microscopy(HRTEM),energy dispersive analysis of X-rays(EDAX)and CNH element analysis.The investigation resnlts show that superfine nanoparticles of vanadium molybderum oxynitrides exist in the channels of MCM-41.展开更多
The nitrogen dimer as both a fundamental building unit in designing a new type of nitrides, and a material gene associated with high electrical and thermal conductivities is investigated by first principles calculatio...The nitrogen dimer as both a fundamental building unit in designing a new type of nitrides, and a material gene associated with high electrical and thermal conductivities is investigated by first principles calculations.The results indicate that the predicted Si N4 is structurally stable and reasonably energy-favored with a striking feature in its band structure that exhibits free electron-like energy dispersions. It possesses a high electrical conductivity(5.07 × 10^5 S/cm) and a high thermal conductivity(371 W/m·K) comparable to copper. The validity is tested by isostructural Al N4 and Si C4. It is demonstrated that the nitrogen dimers can supply a high density of delocalized electrons in this new type of nitrides.展开更多
Using the first-principles method of the plane-wave pseudo-potential, the structural properties of the newly-discovered willemite-Ⅱ Si3N4 (wⅡ phase) and post-phenacite Si3N4 (δ phase) are investigated. The α p...Using the first-principles method of the plane-wave pseudo-potential, the structural properties of the newly-discovered willemite-Ⅱ Si3N4 (wⅡ phase) and post-phenacite Si3N4 (δ phase) are investigated. The α phase is predicted to undergo a first-order α→wⅡ phase transition at 18.6 GPa and 300 K. Within the quasi-harmonic approximation (QHA), the α→wⅡ phase boundary is also obtained. When the well-known β→γ transition is suppressed by some kinetic reasons, the β→δ phase transformation could be observed in the phase diagram. Besides, the temperature dependences of the cell volume,thermal expansion coefficient, bulk modulus, specific heat, entropy and Debye temperature of the involved phases are determined from the non-equilibrium free energies. The thermal expansion coefficients of wⅡ-Si3N4 show no negative values in a pressure range of 0-30 GPa, which implies that the wⅡ-Si3N4 is mechanically stable. More importantly, the δ-Si3N4 is found to be a negative thermal expansion material. Further experimental investigations may be required to determine the physical properties of wⅡ- and δ-Si3N4 with higher reliability.展开更多
During aging at a temperature ranging from 650 -950 ℃,the ferric matrix in duplex stainless steels undergoes various decomposition processes which could form the precipitates of the Sigma (σ) and Chi (X) phases,...During aging at a temperature ranging from 650 -950 ℃,the ferric matrix in duplex stainless steels undergoes various decomposition processes which could form the precipitates of the Sigma (σ) and Chi (X) phases, as well as nitrides. It is well known that these precipitates lead to a reduction in creep ductility and adversely affect toughness and corrosion properties of steel. This experiment carded out qualitative and quantitative analyses of intermetallic phases and nitrides and established an analytical procedure, including specimen preparation, the choosing of the electrolyte and electrolytic systems,electrolytic isolation,wet chemical separation, and physical and chemical analysis, etc. The residues were collected by ultrasonic cleaning and filtration after galvanostatic electrolysis. Dynamic laser scattering sizer (DLS- sizer) ,scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to examine their structure,modality and size. Qualitative and quantitative analyses were performed by using X-ray diffraction (XRD), oxygen-nitrogen analyzer and wet chemical analysis. Furthermore, there is a discussion on the effect of isothermal treatment on precipitation that occurs at different temperatures for different periods of time.展开更多
The synthesis of ceramics based on silicon nitride using nanopowders of TiN and Si3N4 as additives was studied. The ceramic compositions were pressurelessly sintered under ni- trogen atmosphere at different temperatur...The synthesis of ceramics based on silicon nitride using nanopowders of TiN and Si3N4 as additives was studied. The ceramic compositions were pressurelessly sintered under ni- trogen atmosphere at different temperatures (1550℃, 1650℃ and 1750℃) with a heating rate of 10℃/min and a holding time of 2 h. The nanodispersed nitrides (NDN) were produced by electric-arc plasma synthesis and characterized. The ceramic composites obtained with nanoparticles of 1wt% to 5wt% TiN and 20wt% Si3N4 were characterized by scanning electron microscopy (SEM), atom force microscopy (AFM) and energy-dispersive spectrometry (EDX). The effect of the addition of nanodispersed powders on the mechanical properties and microstructure of Si3N4 ceramics was investigated.展开更多
基金the Young Talent Project of the Scientific Research Plan by the Hubei Provincial Department of Education(Grant No.Q20234301)the Guiding Project of the Scientific Research Plan by the Hubei Provincial Department of Education(Grant No.B2023222)+2 种基金the Natural Science Foundation of Hubei Province(Grant No.2022CFB527)the Scientific Research Project of Jingchu University of Technology(Grant Nos.YY202401,096201-5 Chin.Phys.B 33,096201(2024)YY202409,YY202207,and YB202212)the Open Research Projects of Jingchu University of Technology(Grant No.HX20240009).
文摘Recent experimental advancements reported a chemical reaction between antimony and nitrogen under high temperature and high pressure,yielding crystalline antimony nitride(Sb_(3)N_(5))with an orthorhombic structure.Motivated by this statement,we calculate the stability,elastic properties,electronic properties and energy density of the Cmc2_(1) structure for pnictogen nitrides X_(3)N_(5)(X=P,As,Sb,and Bi)using first-principles calculations combined with particle swarm optimization algorithms.Calculations of formation enthalpies,elastic constants and phonon spectra show that P_(3)N_(5),As_(3)N_(5) and Sb_(3)N_(5) are thermodynamically,mechanically and kinetically stable at 35 GPa,whereas Bi_(3)N_(5) is mechanically and kinetically stable but thermodynamically unstable.The computed electronic density of states shows strong covalent bonding between the N atoms and the phosphorus group atoms in the four compounds,confirmed by the calculated electronic localization function.We also calculate the energy densities for Sb_(3)N_(5) and find it to be a potentially high-energy-density material.
基金Natural Science Foundation of Hebei ProvinceTangshan Talent Funding Project,Grant/Award Number:E2022209039+1 种基金Key Research Project of North China University of Science and Technology,Grant/Award Number:ZD-YG 202301Tangshan Talent Punding Project,Grant/Award Number:A202202007
文摘A series of carbon nitride(CN)materials represented by graphitic carbon nitride(g-C_(3)N_(4))have been widely used in bioimaging,biosensing,and other fields in recent years due to their nontoxicity,low cost,and high luminescent quantum efficiency.What is more attractive is that the luminescent properties such as wavelength and intensity can be regulated by controlling the structure at the molecular level.Hence,it is time to summarize the related research on CN structural evolution and make a prospect on future developments.In this review,we first summarize the research history and multiple structural evolution of CN.Then,the progress of improving the luminescence performance of CN through structural evolution was discussed.Significantly,the relationship between CN structure evolution and energy conversion in the forms of photoluminescence,chemiluminescence,and electrochemiluminescence was reviewed.Finally,key challenges and opportunities such as nanoscale dispersion strategy,luminous efficiency improving methods,standardization evaluation,and macroscopic preparation of CN are highlighted.
文摘Multi-phase nitrides bonded silicon carbide lintel blocks were prepared using industrial SiC(SiC≥98 mass%,3-0.5,≤0.5 and≤0.044 mm),Si powder(Si≥98 mass%,≤0.044 mm),and SiO2 micropowder(SiO2≥96 mass%,d50=0.15 pm)as raw materials,and calcium lignosulfonate as the additive,batching,mixing,and molding on a vibration pressure molding machine,drying and then firing at 1420℃for 10 h in high-purity N2.The apparent porosity,the bulk density,the cold modulus of rupture,the hot modulus of rupture,and the linear expansion coefficient of the samples were tested.The phase composition and the microstructure of the samples at different nitriding depths(50,100,and 150 mm)were analyzed by XRD and SEM.The field application effects of the blocks were studied.The results show that:(1)the multi-phase nitrides bonded silicon carbide refractories can dynamically adjust their own phase composition and minimize structural and thermal stresses,improving the service life of key parts of dry quenching furnaces;(2)calcium lignosulfonate can improve the nitriding micro-environment of multi-phase nitrides bonded silicon carbide lintel blocks,successfully increasing the effective nitriding thickness of the blocks to 300 mm;(3)Sinosteel LI RR provides a unique concept in the design of materials and block types as well as the stable and scientific overall structure,promoting the industrialization process of dry quenching furnaces with long service life in China.
文摘A series of monometallic nitrides and bimetallic nitrides were prepared by temperature-programmed reaction with NH3. The effects of Co, Ni and Fe additives and the synergic action between Fe, Co, Ni and Mo on the ammonia decomposition activity were investigated. TPR-MS, XRD were also carried out to obtain better insight into the structure of the bimetallic nitride. The results of ammonia decomposition activity show that bimetallic nitrides are more active than monometallic nitrides or bimetallic oxides.
文摘Co and Mo bimetallic nitrides supported on Mg(Al)O, MgO and γ-Al2O3 were prepared in temperatureprogrammed reactions with NH3. The surface morphology, chemical composition and catalytic activity for NH3 decomposition on the supported Co and Mo bimetallic nitrides were studied by X-ray diffractometer (XRD), NH3 temperature-programmed desorption and mass spectrometer (NH3-TPD-MS), temperature-programmed desorption and mass spectrometer (TPD-MS), H2 temperature-programmed surface reaction (H2-TPSR) and activity test. The phases of Co3Mo3N and MoN could be formed on Mg(Al)O, MgO and Al2O3 during the nitridation, and they might be more uniformly dispersed on Mg(Al)O and MgO than on γ-Al2O3. Transition metallic nitrides are generally considered as potential catalysts for hydrogen-involving reactions due to the entrance of hydrogen atoms into subsurface and the lattice of metallic nitrides. The diffusion of nitrogen in the bulk and the structure transformation of Co and Mo nitride compounds occur during NH3-TPD, but the supported Co and Mo bimetallic nitrides are not easily reduced at H2 atmosphere. Co3Mo3N/Mg(Al)O catalyst exhibits the highest activity, while Co3Mo3N/Al2O3 exhibits the lowest activity for NH3 decomposition. Furthermore, the catalytic activity of Co and Mo bimetallic nitrides is not only much higher than that of supported single metallic nitride, but also highly dependent upon the surface acidity and BET surface area of support.
基金Project(51274248) supported by the National Natural Science Foundation of ChinaProjects(2015DFR50580,2013DFA31440) supported by the International Scientific and Technological Cooperation Projects of China
文摘Faraday pseudocapacitors take both advantages of secondary battery with high energy density and supercapacitors with high power density,and electrode material is the key to determine the performance of Faraday pseudocapacitors.Transition metal oxides and nitrides,as the two main kinds of pseudocapacitor electrode materials,can enhance energy density while maintaining high power capability.Recent advances in designing nanostructured architectures and preparing composites with high specific surface areas based on transition metal oxides and nitrides,including ruthenium oxides,nickel oxides,manganese oxides,vanadium oxides,cobalt oxides,iridium oxides,titanium nitrides,vanadium nitrides,molybdenum nitrides and niobium nitrides,are addressed,which would provide important significances for deep researches on pseudocapacitor electrode materials.
基金the National Natural Science Foundation of China(Nos.51702137,51802128)the Natural Science Foundation of Jiangsu Province,China(No.BK20181013)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions,China(No.18KJB430013)the Foundation of State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering,China(No.2020-KF-20).
文摘A series of transition metal nitrides(MxNy,M=Fe,Co,Ni)nanoparticle(NP)composites caged in N-doped hollow porous carbon sphere(NHPCS)were prepared by impregnation and heat treatment methods.These composites combine the high catalytic activity of nitrides and the high-efficiency mass transfer characteristics of NHPCS.The oxygen reduction reaction results indicate that Fe2N/NHPCS has the synergistic catalytic performance of higher onset potential(0.96 V),higher electron transfer number(~4)and higher limited current density(1.4 times as high as that of commercial Pt/C).In addition,this material is implemented as the air catalyst for zinc−air battery that exhibits considerable specific capacity(795.1 mA·h/g)comparable to that of Pt/C,higher durability and maximum power density(173.1 mW/cm2).
文摘Oxidation of carbon is the main problem or Al2O3 - C refractories. ZrO2 - nitrides composite powder was synthesized through carbothermal reduction and nitridation (CRN) of zircon. The effect of ZrO2 - nitrides composite powder addition on oxidation resistance of the Al2O3 - C refractories was investigated by measuring the thickness of oxidation layer. Phase compositions of the Al2O3 - C refractories before and after oxidation were investigated by X-ray diffraction ( XRD ). Results show that the oxidation resistance of the Al2O3 - C refractories can be obviously improved by adding the synthesized ZrO2 - nitrides composite powder. The formation of mullite and zircon in the oxidation layer results in the densification of oxidation layer, which prevents oxygen diffusion and bnproves the oxidation resistance of the Al2O3 - C refractories.
基金This work was financially supported by the National High-Tech Research and Development Program of China(No.2001AA332020).
文摘The carbides/nitrides precipitates in ferrite grains, on grain boundaries and dislocations were investigated on a hot-rolled C-Mn strip (0.16wt%C-1.22wt%Mn-0.022wt%Ti) produced by the CSP (compact strip production) technology using TEM and X-ray energy dispersive spectroscopy. The Pickering's equation for the contribution of precipitates to the yield stress was also discussed. It is shown that there are numerous fine and dispersive precipitates TiC in the ferrite grains, on the grain boundaries and dislocations. Also there are a small amount of coarser Ti(C, N) particles and TiC particles associated with MnS. Precipitation strengthening on steels produced by the CSP technology is significant.
基金financial support from the National Key Research and Development Program of China(2017YFB0102900)
文摘Zn-air batteries(ZABs),especially the secondary batteries,have engrossed a great interest because of its high specific energy,economical and high safety.However,due to the insufficient activity and stability of bifunctional electrocatalysts for air-cathode oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)processes,the practical application of rechargeable ZABs is seriously hindered.In the effort of developing high active,stable and cost-effective electrocatalysts,transition metal nitrides(TMNs)have been regarded as the candidates due to their high conductivity,strong corrosion-resistance,and bifunctional catalytic performance.In this paper,the research progress in TMNs-based material as ORR and OER electrocatalysts for ZABs is discussed with respect to their synthesis,chemical/physical characterization,and performance validation/optimization.The surface/interface nanoengineering strategies such as defect engineering,support binding,heteroatom introduction,crystal plane orientation,interface construction and small size effect,the physical and chemical properties of TMNs-based electrocatalysts are emphasized with respect to their structures/morphologies,composition,electrical conductivity,specific surface area,chemical stability and corrosion resistance.The challenges of TMNs-based materials as bifunctional air-cathode electrocatalysts in practical application are evaluated,and numerous research guidelines to solve these problems are put forward for facilitating further research and development.
基金supported by the National Science Fund of the Bulgarian Ministry of Education and Science (Project DO 02-199/17.12.2008)
文摘In this article the plasma-chemical synthesis of nanosized powders (nitrides, car- bides, oxides, carbon nanotubes and fullerenes) is reviewed. Nanosized powders - nitrides, carbides, oxides, carbon nanotubes and fullerenes have been successfully produced using different techniques, technological apparatuses and conditions for their plasma-chemical synthesis.
基金Project supported by the State Key Program of the National Natural Science Foundation of China(Grant No.61734008)the National Natural Science Foundation of China(Grant No.62174173)。
文摘Ⅲ-nitride semiconductor materials have excellent optoelectronic properties,mechanical properties,and chemical stability,which have important applications in the field of optoelectronics and microelectronics.Two-dimensional(2D)materials have been widely focused in recent years due to their peculiar properties.With the property of weak bonding between layers of 2D materials,the growth ofⅢ-nitrides on 2D materials has been proposed to solve the mismatch problem caused by heterogeneous epitaxy and to develop substrate stripping techniques to obtain high-quality,low-cost nitride materials for high-quality nitride devices and their extension in the field of flexible devices.In this progress report,the main methods for the preparation of 2D materials,and the recent progress and applications of different techniques for the growth ofⅢ-nitrides based on 2D materials are reviewed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11074061 and 50972031)the Natural Science Foundation for Youth of Heilongjiang Province of China (Grant No. QC2010006)+1 种基金the Science and Technology Plan of Heilongjiang Provincial Education Department, China (Grant No. 12511163)the Foundation for Young Key Scholars of Harbin Normal University, China (Grant No. 11KXQ-08)
文摘Raman spectra of amorphous carbon nitride films (a-C:N) resemble those of typical amorphous carbon (a-C), and no specific features in the spectra are shown due to N doping. The present work provides a correlation between the microstructure and vibrational properties of a-C:N films from first principles. The six periodic model structures of 64 atoms with various mass densities and nitrogen contents are generated by the liquid-quench method using Car-Parinello molecular dynamics. By using Raman coupling tensors calculated with the finite electric field method, Raman spectra are obtained. The calculated results show that the vibrations of C=N could directly contribute to the Raman spectrum. The similarity of the Raman line shapes of N-doped and N-free amorphous carbons is due to the overlapping of C=N and C=C vibration bands. In addition, the origin of characteristic Raman peaks is also given.
文摘The group Ⅲ nitrides are an important class of materials with aplications in UV and visible optoelectronics,high temperature electronics,cold cathodes and solar blind detectors.In recent years,with the realisation of nitride based LEDs,the use of GaN IED has the potential to compete with 1raditional filament and discharge lamps,for the provision of white lighting,and there has been an explosion of interest in the MOCVD growth of GaN based materials with an increasing focus on large area multiwafer reactors and wafer uniforrmity.This paper will review the design philosophy and characteristics of close-coupled showerhead reactors,relating these to the requirements of group Ⅲ-nitride growth,and will present a selection of data resulting from the operation of such equipment.These results suggest that the close coupled showerhead style of reactor is very suitable for the growth of GaN based structures in both research and production environments.
文摘The nitrides of transient metals have a high hardness, thermal stability, remarkable wear resistance in aggressive chemical mediums, melted metals and alloys, high corrosion resistance, and low coefficient of electric resistance. Under the conditions of low-temperature argon plasma (LTP), thermodynamic investigations were conducted in the process of obtaining of A1N, TiN and Si3N4 in a temperature range of 1000 K to 6000 K. To investigate the thermodynamic possibility of obtaining nitrides, a computer model was used which provided the equilibrium composition of gaseous and solid phases at different temperatures. The conditions for chemical equilibrium of the system were based on the minimization of Gibbs' energy.
文摘Vanadium molybdenum oxynitrides nanoparticles were synthesized successfully in the channels of MCM-41 after surface modification,vacumm co-impregnation and nitridation technology.The products were investigated by nitrogen sorption measurement,X-ray powder diffraction(XRD),high-resolution transmission electron microscopy(HRTEM),energy dispersive analysis of X-rays(EDAX)and CNH element analysis.The investigation resnlts show that superfine nanoparticles of vanadium molybderum oxynitrides exist in the channels of MCM-41.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51532010,91422303,51672306 and 51772322the National Key Research and Development Program of China under Grant No 2016YFA0300604+1 种基金the Beijing Municipal Science&Technology Commission under Grant No Z161100002116018the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB07020100
文摘The nitrogen dimer as both a fundamental building unit in designing a new type of nitrides, and a material gene associated with high electrical and thermal conductivities is investigated by first principles calculations.The results indicate that the predicted Si N4 is structurally stable and reasonably energy-favored with a striking feature in its band structure that exhibits free electron-like energy dispersions. It possesses a high electrical conductivity(5.07 × 10^5 S/cm) and a high thermal conductivity(371 W/m·K) comparable to copper. The validity is tested by isostructural Al N4 and Si C4. It is demonstrated that the nitrogen dimers can supply a high density of delocalized electrons in this new type of nitrides.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11005088 and 11105115)the Key Project of Henan Educational Commit-tee,China(Grant No.12A140010)the Special Foundation for Young Teacher of Xinyang Normal University,China(Grant No.2011084)
文摘Using the first-principles method of the plane-wave pseudo-potential, the structural properties of the newly-discovered willemite-Ⅱ Si3N4 (wⅡ phase) and post-phenacite Si3N4 (δ phase) are investigated. The α phase is predicted to undergo a first-order α→wⅡ phase transition at 18.6 GPa and 300 K. Within the quasi-harmonic approximation (QHA), the α→wⅡ phase boundary is also obtained. When the well-known β→γ transition is suppressed by some kinetic reasons, the β→δ phase transformation could be observed in the phase diagram. Besides, the temperature dependences of the cell volume,thermal expansion coefficient, bulk modulus, specific heat, entropy and Debye temperature of the involved phases are determined from the non-equilibrium free energies. The thermal expansion coefficients of wⅡ-Si3N4 show no negative values in a pressure range of 0-30 GPa, which implies that the wⅡ-Si3N4 is mechanically stable. More importantly, the δ-Si3N4 is found to be a negative thermal expansion material. Further experimental investigations may be required to determine the physical properties of wⅡ- and δ-Si3N4 with higher reliability.
文摘During aging at a temperature ranging from 650 -950 ℃,the ferric matrix in duplex stainless steels undergoes various decomposition processes which could form the precipitates of the Sigma (σ) and Chi (X) phases, as well as nitrides. It is well known that these precipitates lead to a reduction in creep ductility and adversely affect toughness and corrosion properties of steel. This experiment carded out qualitative and quantitative analyses of intermetallic phases and nitrides and established an analytical procedure, including specimen preparation, the choosing of the electrolyte and electrolytic systems,electrolytic isolation,wet chemical separation, and physical and chemical analysis, etc. The residues were collected by ultrasonic cleaning and filtration after galvanostatic electrolysis. Dynamic laser scattering sizer (DLS- sizer) ,scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to examine their structure,modality and size. Qualitative and quantitative analyses were performed by using X-ray diffraction (XRD), oxygen-nitrogen analyzer and wet chemical analysis. Furthermore, there is a discussion on the effect of isothermal treatment on precipitation that occurs at different temperatures for different periods of time.
文摘The synthesis of ceramics based on silicon nitride using nanopowders of TiN and Si3N4 as additives was studied. The ceramic compositions were pressurelessly sintered under ni- trogen atmosphere at different temperatures (1550℃, 1650℃ and 1750℃) with a heating rate of 10℃/min and a holding time of 2 h. The nanodispersed nitrides (NDN) were produced by electric-arc plasma synthesis and characterized. The ceramic composites obtained with nanoparticles of 1wt% to 5wt% TiN and 20wt% Si3N4 were characterized by scanning electron microscopy (SEM), atom force microscopy (AFM) and energy-dispersive spectrometry (EDX). The effect of the addition of nanodispersed powders on the mechanical properties and microstructure of Si3N4 ceramics was investigated.