Crop yield potential can be increased through the use of appropriate agronomic practices. Integrated agronomic practice (IAP) is an effective way to increase maize (Zea mays L.) grain yield and nitrogen use efficiency...Crop yield potential can be increased through the use of appropriate agronomic practices. Integrated agronomic practice (IAP) is an effective way to increase maize (Zea mays L.) grain yield and nitrogen use efficiency (NUE);however, the physiological processes associated with gains in yield potential obtained from IAP, particularly the different under various soil fertility conditions, remain poorly understood. An IAP strategy including optimal planting density, split fertilizer application, and subsoiling tillage was evaluated over two growing seasons to determine whether the effects of IAP on maize yield and NUE differ under different levels of soil fertility. Compared to farmers' practices (FP), IAP increased maize grain yield in 2013 and 2014 by 25% and 28%, respectively, in low soil fertility (LSF) fields and by 36% and 37%, respectively, in high soil fertility (HSF) fields. The large yield gap was attributed mainly to greater dry matter (DM) and N accumulation with IAP than with FP owing to increased leaf area index (LAI) and DM accumulation rate, which were promoted by greater soil mineral N content (Nmin) and root length. Post-silking DM and N accumulation were also greater with IAP than with FP under HSF conditions, accounting for 60% and 43%, respectively, of total biomass and N accumulation;however, no significant differences were found for post-silking DM and N accumulation between IAP and FP under LSF conditions. Thus, the increase in grain yield with IAP was greater under HSF than under LSF. Because of greater grain yield and N uptake, IAP significantly increased N partial factor productivity, agronomic N efficiency, N recovery efficiency, and physiological efficiency of applied N compared to FP, particularly in the HSF fields. These results indicate that considerable further increases in yield and NUE can be obtained by increasing effective soil N content and maize root length to promote post-silking N and DM accumulation in maize planted at high plant density, especially in fields with low soil fertility.展开更多
[Objective] This study aimed to investigate the effects of gel-based controlled release fertilizers (CRFs) on agronomic characteristics and physiological indices of corn. [Method] Pot experiment was carried out to i...[Objective] This study aimed to investigate the effects of gel-based controlled release fertilizers (CRFs) on agronomic characteristics and physiological indices of corn. [Method] Pot experiment was carried out to investigate the agronomic characteristics and physiological indices of corn fertilized with controlled release fertilizers compared with conventional fertilizer (CF). [Result] Plant height, stem girth, leaf area and root volume of corn were significantly increased under the CRF treatments; photosynthetic rate and soluble protein content were also improved. Dry matter accumulations under the two CRF treatments were increased by 21.3% and 17.0% compared with CF application at one time (CF1), and 19.6% and 15.4% with CF application at two times (CF2), respectively. Accumulation amounts of N, P and K in whole plant under the two CRF treatments were increased by 44.0% -24.7% , 40.0%-25.9% and 20.1% -13.9% ; and the nutrient use efficiencies of N, P and K were improved by 22.9% -13.4% , 11.2% -9.6% and 17.5% -12.1% , respectively. [Conclusion] The results implied that the CRFs could significantly improve nutrient use efficiency and plant yield.展开更多
Soluble phosphate fertilizers have been preferably used in plant crop production. The cost of applying conventional water soluble phosphate fertilizer is high in developing countries since their manufacturing requires...Soluble phosphate fertilizers have been preferably used in plant crop production. The cost of applying conventional water soluble phosphate fertilizer is high in developing countries since their manufacturing requires importing high grade rock phosphate (RP). As a result, the use of indigenously available low-grade RP is gaining importance globally. In this study, experiments were carried out using clayey loamy alkaline soil to evaluate the agronomic efficiency of fine sized low grade RP with inorganic nitrogen fertilizers and it was further compared with that of soluble phosphate fertilizer (di-ammonium phosphate), Cicer arietinum was the test crops subjected to treatments of absolute control, di-ammonium phosphate and low grade RP with varying concentrations of ammonium sulphate or ammonium nitrate. The experiments were conducted during 2012-2013 in the bid to study the growth rate and the biomass of the crop. Tests were also performed to determine the residual effects of the fertilizers on the crops. The results revealed that the combined use of low grade RP and ammonium sulphate or ammonium nitrate, at 16 kg N/ha, resulted in an agronomic efficiency, in terms of biomass of plants, comparable to that of di-ammonium phosphate and was found to be a more attractive management option for resource-poor farmers.展开更多
Inappropriate use of fertilizers is one of the major production constraints in sesame. Studies on N fertilizer optimization on sesame were conducted at Humera Agricultural Research Center(Hu ARC) under rain fed and ir...Inappropriate use of fertilizers is one of the major production constraints in sesame. Studies on N fertilizer optimization on sesame were conducted at Humera Agricultural Research Center(Hu ARC) under rain fed and irrigation conditions. Thirteen(13) N doses were evaluated in a Randomized Complete Block Design(RCBD)during 2016–2018 for rainfed conditions and 2017 to 2019 for irrigation conditions. The study was conducted with objective to optimize N fertilizer use for sesame. In the rainfed condition, the results demonstrated a prolonged duration to reach 50% flowering with higher nitrogen(N) application rates. The application of 52.5–110kg N ha^(-1) resulted in significantly higher seed yield, while lower(18 kg N ha^(-1)) and higher(156 kg N ha^(-1)) doses of N led to reduced seed yield. Under irrigation conditions, superior seed weights and maximum seed yield were observed at 64 and 75 kg N ha^(-1), whereas lower N doses resulted in diminished seed yield. The agronomic efficiency of N fertilizer(N-AE) was found to be highest at the rate of 64 kg N ha^(-1) under both growing conditions.The partial budget analysis revealed that applying 64 kg N ha^(-1) for rainfed cultivation and between 64 and 75 kg N ha^(-1) for irrigated sesame production yielded greater net profit, MRR, and residual ranking. Therefore, it is recommended to apply a rate of 64 kg N ha^(-1) for rainfed sesame cultivation and between 64 up to 75 kg N ha^(-1) for the irrigated sesame inorder to increase the productivity of this crop.展开更多
The soybean, cotton, maize and sorghum were planted in pot under low nitrogen, high nitrogen treatments, the soil available nitrogen constitution and con- version and utilization of nitrogen fertilizer were determined...The soybean, cotton, maize and sorghum were planted in pot under low nitrogen, high nitrogen treatments, the soil available nitrogen constitution and con- version and utilization of nitrogen fertilizer were determined, so as to provide techni- cal guidance for reasonable use and improving use efficiency of nitrogen fertilizer for different types of crops. Compared with the control with nitrogen but unplanted crop, growing soybean, cotton, maize, sorghum significantly decreased the soil available N contents by 53. 48%, 51.54%, 33.10%, 55.03%,and influenced the constitution of soil available N. Thereinto, growing soybean, cotton, maize and sorghum significantly decreased soil inorganic N contents by 85.41%, 83.09%, 70.89% and 83.35%,but increased soil hydrolysable organic N contents by 1.41, 1.53, 2.11 and 1.28 times, respectively; growing soybean, cotton, maize and sorghum significantly decreased the rate of soil inorganic N to available N by 68.61%, 65.09%, 56.47% and 63.00%, but increased the rate of soil hydrolysable organic N to available N by 4.18, 4.21, 3.66 and 4.08 times, respectively. Compared with the control, growing soybean, cotton, maize and sorghum significantly increased the transform rate of ammonium nitrogen fertilizer by 93.66%, 38.19%, 32.58% and 38.31% respectively, and growing soybean treatment had the highest increasing range; the nitrification rates of ammo- nium nitrogen fertilizer of growing soybean, cotton, maize and sorghum treatments were negative values, and growing soybean treatment had the highest decreasing amplitude. The ammonium nitrogen fertilizer use efficiency of growing soybean, cot- ton, maize and sorghum treatments were 52.01%, 28.31%, 24.16% and 28.40% re- spectively and growing soybean treatment had the highest value. In conclusion, growing crops suppressed the soil nitrification and accelerated the development of soil hydrolysable organic nitrogen by the utilization of soil available nitrogen and the alteration of soil environment, and hence impacted the constitution of soil available nitrogen and the transform and use of ammonium nitrogen applied in soil. Legumi- nous crops had stronger ability of suppressing nitrification, making use of ammonium compared with non-Leguminous crops.展开更多
Oilseed flax is one of the most important oil crops in China.With the improvement of people's living standards and the deepening knowledge of the nutritional value of oilseed flax,the demand and economic value of ...Oilseed flax is one of the most important oil crops in China.With the improvement of people's living standards and the deepening knowledge of the nutritional value of oilseed flax,the demand and economic value of oilseed flax are increasing,and the cultivated area in China is expanding.However,the grain yield of oilseed flax is lower than other oil crops.It varies significantly from year to year,combined with a lower degree of mechanization,which has greatly limited the healthy development of the flax industry.Some of the effects of agronomic measures on productivity and water use efficiency of oilseed flax are reviewed in this paper.The major agronomic strategies for the productivity of oilseed flax were presented based on fertilization,plant density,irrigation,cropping pattern and weed control.Future research should investigate the effect of silicon and potassium fertilizers on the mechanism of lodging resistance of oilseed flax,the effects of diversified cropping systems(strip intercropping and crop rotation)on high and stable productivity and efficient utilization of resources.展开更多
Maize (Zea mays L.) is an important food crop in Niger, but low and irregular rainfall combined with sandy soils having low fertility level limit productivity. A two-year study was conducted at Institut National de ...Maize (Zea mays L.) is an important food crop in Niger, but low and irregular rainfall combined with sandy soils having low fertility level limit productivity. A two-year study was conducted at Institut National de Recherche Agronomique du Niger (INRAN) stations in Tarna/Maradi and Bengou/Gaya in 2014 and 2015 in order to evaluate maize agronomic and economic fertilizer use efficiency. The experimental design was a randomised complete block design (RCBD) with three replications. Results indicate higher effect of fertilizer in 2015 compared to 2014. At low N rates 20 kg N/ha and 40 kg N/ha, application of 20 kg P/ha increased maize grain yield across locations and years. The highest agronomic efficiency of N (AEN) was recorded with 60 kg N/ha in 2015 at Bengou and Tarna with 9.65 kg and 14.05 kg grain yield per kg of applied N, respectively. At Tarna, the low N rates of 20 kg N/ha and 40 kg N/ha recorded important AEN of more than 12 kg yield increases per kg of applied N. The highest rainfall use efficiency (RUE) of 6.13 kg/year/mm was obtained with application of 80 kg/ha N, 0 kg/ha P and 40 kg/ha N, 20 kg/ha P in 2015 at Tarna. Without P, the highest value cost ratio (VCR) value of 4.31 was recorded at Tarna in 2015 with 60 kg/ha N, and the lowest value of 0.08 at Bengou in 2014 with 20 kg/ha N. Based on VCR and RUE derived from this study, the optimal fertilizer recommendation for maize in the semi-arid conditions of Niger could be 40 kg/ha N, 20 kg/ha P and 0 kg/ha K.展开更多
The use of balanced fertilizers in adequate amount is very important to increase crop productivity and production in Ethiopia. The study was executed to quantify maize (Zea mays L.) grain yield response to different r...The use of balanced fertilizers in adequate amount is very important to increase crop productivity and production in Ethiopia. The study was executed to quantify maize (Zea mays L.) grain yield response to different rates of nitrogen (N), phosphorus (P), potassium (K) and sulfur (S) under balanced fertilization of other nutrients. On farm trials were conducted at seven sites on 8 farmers’ fields in Negele Arsi districts, west Arsi zone of Oromia region for three consecutive cropping seasons (2014-2016). Six rates of N, P, S and eight rates of K treatments established separately for each nutrient were laid out in randomized complete block (RCB) design with three replicates per farm. Nutrient response function modelling showed that 184, 20 and 80 kg•ha<sup>−1</sup> were the agronomic optimum rate for N, P, and K, respectively. Mean agronomic efficiency (AE) of N, P and K were recorded at the lower rates of these nutrients, application of 46, 10 and 20 kg•ha<sup>−1</sup> N, P and K resulted in 19.1, 61.0, and 24 kg additional grain yield•kg<sup>−1</sup> N, P and K, respectively. Also, the mean partial factor productivity (PFP) of N, P and K were 77.6, 370 and 158 kg additional grain•kg<sup>−1</sup> applied N, P and K respectively. Economically optimal rate (EOR) of N, P and K were 48 - 114 kg•ha<sup>−1</sup> N with CP 8 - 3.5, 12 - 20 kg•ha<sup>−1</sup> P with CP 18 - 4.5 and 32 - 53 kg•ha<sup>−1</sup> K with CP 8-4, from these rates net returns of US$487.23 - 143.30, US$698.16 - 498.3 and US$359.31 - 193.63 could be obtained respectively. To conclude, application of 84, 12 and 40 kg•ha<sup>−1 </sup>N, P and K could be recommended for the production of maize.展开更多
小规模农业生产易于出现不合理施肥导致的肥料利用率低等问题,严重影响到生态环境和农业可持续发展。研究建立适合我国小农户集约化农业生产特点且科学轻简的养分推荐方法尤为重要。中国农业科学院农业资源与农业区划研究所会同全国39...小规模农业生产易于出现不合理施肥导致的肥料利用率低等问题,严重影响到生态环境和农业可持续发展。研究建立适合我国小农户集约化农业生产特点且科学轻简的养分推荐方法尤为重要。中国农业科学院农业资源与农业区划研究所会同全国39个土壤肥料研究团队,研发了适合我国农业生态条件和种植体系的基于产量反应和农学效率的作物推荐施肥方法。该方法在汇总分析全国各作物主产区开展的肥料田间试验的基础上,建立了包含作物产量反应、农学效率及养分吸收与利用等信息的数据库。采用QUEFTS(quantitative evaluation of the fertility of tropical soils)模型模拟作物养分吸收,同时对数据库中土壤基础养分供应、作物农学效率与产量反应进行相关分析,建立基于产量反应和农学效率的作物推荐施肥模型。在此基础上,借助计算机技术和智能云计算,研发了“养分专家系统”(简称NE系统),用户只需提供种植地块的一些基本信息,如往年农民习惯措施下的作物产量、施肥历史、有机无机肥料投入以及秸秆还田情况,NE系统就能给出基于该地块的个性化施肥方案。NE系统在推荐施肥中除了考虑土壤基础地力外,还考虑了上季作物养分残效和秸秆还田带入的养分,以及作物轮作体系和有机肥施用情况等,提出的推荐施肥方案符合4R养分管理策略(最佳肥料品种、最佳用量、最佳施用时间和最佳施用位置),同时兼顾施肥的农学、经济和环境效应。多点田间验证试验证实,NE系统推荐施肥兼顾科学性和实用性,且易于掌握,是一种能够保障作物增产增收、提高肥料利用率和保护环境的科学推荐施肥方法。展开更多
基金supported by the Key National Research and Development Program of China (2016YFD0300207, 2016YFD0300103)the China Agriculture Research System (CRRS-02)
文摘Crop yield potential can be increased through the use of appropriate agronomic practices. Integrated agronomic practice (IAP) is an effective way to increase maize (Zea mays L.) grain yield and nitrogen use efficiency (NUE);however, the physiological processes associated with gains in yield potential obtained from IAP, particularly the different under various soil fertility conditions, remain poorly understood. An IAP strategy including optimal planting density, split fertilizer application, and subsoiling tillage was evaluated over two growing seasons to determine whether the effects of IAP on maize yield and NUE differ under different levels of soil fertility. Compared to farmers' practices (FP), IAP increased maize grain yield in 2013 and 2014 by 25% and 28%, respectively, in low soil fertility (LSF) fields and by 36% and 37%, respectively, in high soil fertility (HSF) fields. The large yield gap was attributed mainly to greater dry matter (DM) and N accumulation with IAP than with FP owing to increased leaf area index (LAI) and DM accumulation rate, which were promoted by greater soil mineral N content (Nmin) and root length. Post-silking DM and N accumulation were also greater with IAP than with FP under HSF conditions, accounting for 60% and 43%, respectively, of total biomass and N accumulation;however, no significant differences were found for post-silking DM and N accumulation between IAP and FP under LSF conditions. Thus, the increase in grain yield with IAP was greater under HSF than under LSF. Because of greater grain yield and N uptake, IAP significantly increased N partial factor productivity, agronomic N efficiency, N recovery efficiency, and physiological efficiency of applied N compared to FP, particularly in the HSF fields. These results indicate that considerable further increases in yield and NUE can be obtained by increasing effective soil N content and maize root length to promote post-silking N and DM accumulation in maize planted at high plant density, especially in fields with low soil fertility.
基金Supported by the Effect and Mechanism of Gel-based Controlled Release Fertilizers on Controlling the Nutrient Loss in Soil Erosion (10501-291)Research and Demonstration of New Special Fertilizer for Seawater Fishes and Shellfish (2012-931)+1 种基金Key Techniques and Demonstration of Tobacco Controlled Release Fertilizer Industrialization (2012-045)Research and Application of Gel-based Controlled Release Fertilizers (2002N002)~~
文摘[Objective] This study aimed to investigate the effects of gel-based controlled release fertilizers (CRFs) on agronomic characteristics and physiological indices of corn. [Method] Pot experiment was carried out to investigate the agronomic characteristics and physiological indices of corn fertilized with controlled release fertilizers compared with conventional fertilizer (CF). [Result] Plant height, stem girth, leaf area and root volume of corn were significantly increased under the CRF treatments; photosynthetic rate and soluble protein content were also improved. Dry matter accumulations under the two CRF treatments were increased by 21.3% and 17.0% compared with CF application at one time (CF1), and 19.6% and 15.4% with CF application at two times (CF2), respectively. Accumulation amounts of N, P and K in whole plant under the two CRF treatments were increased by 44.0% -24.7% , 40.0%-25.9% and 20.1% -13.9% ; and the nutrient use efficiencies of N, P and K were improved by 22.9% -13.4% , 11.2% -9.6% and 17.5% -12.1% , respectively. [Conclusion] The results implied that the CRFs could significantly improve nutrient use efficiency and plant yield.
文摘Soluble phosphate fertilizers have been preferably used in plant crop production. The cost of applying conventional water soluble phosphate fertilizer is high in developing countries since their manufacturing requires importing high grade rock phosphate (RP). As a result, the use of indigenously available low-grade RP is gaining importance globally. In this study, experiments were carried out using clayey loamy alkaline soil to evaluate the agronomic efficiency of fine sized low grade RP with inorganic nitrogen fertilizers and it was further compared with that of soluble phosphate fertilizer (di-ammonium phosphate), Cicer arietinum was the test crops subjected to treatments of absolute control, di-ammonium phosphate and low grade RP with varying concentrations of ammonium sulphate or ammonium nitrate. The experiments were conducted during 2012-2013 in the bid to study the growth rate and the biomass of the crop. Tests were also performed to determine the residual effects of the fertilizers on the crops. The results revealed that the combined use of low grade RP and ammonium sulphate or ammonium nitrate, at 16 kg N/ha, resulted in an agronomic efficiency, in terms of biomass of plants, comparable to that of di-ammonium phosphate and was found to be a more attractive management option for resource-poor farmers.
基金supported financially by Tigray Agricultural Research Institute,Humera Agricultural Research Center.
文摘Inappropriate use of fertilizers is one of the major production constraints in sesame. Studies on N fertilizer optimization on sesame were conducted at Humera Agricultural Research Center(Hu ARC) under rain fed and irrigation conditions. Thirteen(13) N doses were evaluated in a Randomized Complete Block Design(RCBD)during 2016–2018 for rainfed conditions and 2017 to 2019 for irrigation conditions. The study was conducted with objective to optimize N fertilizer use for sesame. In the rainfed condition, the results demonstrated a prolonged duration to reach 50% flowering with higher nitrogen(N) application rates. The application of 52.5–110kg N ha^(-1) resulted in significantly higher seed yield, while lower(18 kg N ha^(-1)) and higher(156 kg N ha^(-1)) doses of N led to reduced seed yield. Under irrigation conditions, superior seed weights and maximum seed yield were observed at 64 and 75 kg N ha^(-1), whereas lower N doses resulted in diminished seed yield. The agronomic efficiency of N fertilizer(N-AE) was found to be highest at the rate of 64 kg N ha^(-1) under both growing conditions.The partial budget analysis revealed that applying 64 kg N ha^(-1) for rainfed cultivation and between 64 and 75 kg N ha^(-1) for irrigated sesame production yielded greater net profit, MRR, and residual ranking. Therefore, it is recommended to apply a rate of 64 kg N ha^(-1) for rainfed sesame cultivation and between 64 up to 75 kg N ha^(-1) for the irrigated sesame inorder to increase the productivity of this crop.
基金Supported by National Natural Science Foundation of China(41371259)Hubei Natural Science Foundation(2014CFB545)~~
文摘The soybean, cotton, maize and sorghum were planted in pot under low nitrogen, high nitrogen treatments, the soil available nitrogen constitution and con- version and utilization of nitrogen fertilizer were determined, so as to provide techni- cal guidance for reasonable use and improving use efficiency of nitrogen fertilizer for different types of crops. Compared with the control with nitrogen but unplanted crop, growing soybean, cotton, maize, sorghum significantly decreased the soil available N contents by 53. 48%, 51.54%, 33.10%, 55.03%,and influenced the constitution of soil available N. Thereinto, growing soybean, cotton, maize and sorghum significantly decreased soil inorganic N contents by 85.41%, 83.09%, 70.89% and 83.35%,but increased soil hydrolysable organic N contents by 1.41, 1.53, 2.11 and 1.28 times, respectively; growing soybean, cotton, maize and sorghum significantly decreased the rate of soil inorganic N to available N by 68.61%, 65.09%, 56.47% and 63.00%, but increased the rate of soil hydrolysable organic N to available N by 4.18, 4.21, 3.66 and 4.08 times, respectively. Compared with the control, growing soybean, cotton, maize and sorghum significantly increased the transform rate of ammonium nitrogen fertilizer by 93.66%, 38.19%, 32.58% and 38.31% respectively, and growing soybean treatment had the highest increasing range; the nitrification rates of ammo- nium nitrogen fertilizer of growing soybean, cotton, maize and sorghum treatments were negative values, and growing soybean treatment had the highest decreasing amplitude. The ammonium nitrogen fertilizer use efficiency of growing soybean, cot- ton, maize and sorghum treatments were 52.01%, 28.31%, 24.16% and 28.40% re- spectively and growing soybean treatment had the highest value. In conclusion, growing crops suppressed the soil nitrification and accelerated the development of soil hydrolysable organic nitrogen by the utilization of soil available nitrogen and the alteration of soil environment, and hence impacted the constitution of soil available nitrogen and the transform and use of ammonium nitrogen applied in soil. Legumi- nous crops had stronger ability of suppressing nitrification, making use of ammonium compared with non-Leguminous crops.
基金funded by the Research Program Sponsored by Gansu Provincial Key Laboratory of Arid Land Crop Science,Gansu Agricultural University(GSCS-2020-Z6)the China Agriculture Research System of MOF and MARA(CARS-14-1-16)+2 种基金the National Natural Science Foundation of China(31760363 and 32060437)the Fuxi Outstanding Talent Cultivation Plan of Gansu Agriculture University(Gaufx-02J05)the Education Science and Technology Innovation Project of Gansu Province(2021CXZX-366)。
文摘Oilseed flax is one of the most important oil crops in China.With the improvement of people's living standards and the deepening knowledge of the nutritional value of oilseed flax,the demand and economic value of oilseed flax are increasing,and the cultivated area in China is expanding.However,the grain yield of oilseed flax is lower than other oil crops.It varies significantly from year to year,combined with a lower degree of mechanization,which has greatly limited the healthy development of the flax industry.Some of the effects of agronomic measures on productivity and water use efficiency of oilseed flax are reviewed in this paper.The major agronomic strategies for the productivity of oilseed flax were presented based on fertilization,plant density,irrigation,cropping pattern and weed control.Future research should investigate the effect of silicon and potassium fertilizers on the mechanism of lodging resistance of oilseed flax,the effects of diversified cropping systems(strip intercropping and crop rotation)on high and stable productivity and efficient utilization of resources.
文摘Maize (Zea mays L.) is an important food crop in Niger, but low and irregular rainfall combined with sandy soils having low fertility level limit productivity. A two-year study was conducted at Institut National de Recherche Agronomique du Niger (INRAN) stations in Tarna/Maradi and Bengou/Gaya in 2014 and 2015 in order to evaluate maize agronomic and economic fertilizer use efficiency. The experimental design was a randomised complete block design (RCBD) with three replications. Results indicate higher effect of fertilizer in 2015 compared to 2014. At low N rates 20 kg N/ha and 40 kg N/ha, application of 20 kg P/ha increased maize grain yield across locations and years. The highest agronomic efficiency of N (AEN) was recorded with 60 kg N/ha in 2015 at Bengou and Tarna with 9.65 kg and 14.05 kg grain yield per kg of applied N, respectively. At Tarna, the low N rates of 20 kg N/ha and 40 kg N/ha recorded important AEN of more than 12 kg yield increases per kg of applied N. The highest rainfall use efficiency (RUE) of 6.13 kg/year/mm was obtained with application of 80 kg/ha N, 0 kg/ha P and 40 kg/ha N, 20 kg/ha P in 2015 at Tarna. Without P, the highest value cost ratio (VCR) value of 4.31 was recorded at Tarna in 2015 with 60 kg/ha N, and the lowest value of 0.08 at Bengou in 2014 with 20 kg/ha N. Based on VCR and RUE derived from this study, the optimal fertilizer recommendation for maize in the semi-arid conditions of Niger could be 40 kg/ha N, 20 kg/ha P and 0 kg/ha K.
文摘The use of balanced fertilizers in adequate amount is very important to increase crop productivity and production in Ethiopia. The study was executed to quantify maize (Zea mays L.) grain yield response to different rates of nitrogen (N), phosphorus (P), potassium (K) and sulfur (S) under balanced fertilization of other nutrients. On farm trials were conducted at seven sites on 8 farmers’ fields in Negele Arsi districts, west Arsi zone of Oromia region for three consecutive cropping seasons (2014-2016). Six rates of N, P, S and eight rates of K treatments established separately for each nutrient were laid out in randomized complete block (RCB) design with three replicates per farm. Nutrient response function modelling showed that 184, 20 and 80 kg•ha<sup>−1</sup> were the agronomic optimum rate for N, P, and K, respectively. Mean agronomic efficiency (AE) of N, P and K were recorded at the lower rates of these nutrients, application of 46, 10 and 20 kg•ha<sup>−1</sup> N, P and K resulted in 19.1, 61.0, and 24 kg additional grain yield•kg<sup>−1</sup> N, P and K, respectively. Also, the mean partial factor productivity (PFP) of N, P and K were 77.6, 370 and 158 kg additional grain•kg<sup>−1</sup> applied N, P and K respectively. Economically optimal rate (EOR) of N, P and K were 48 - 114 kg•ha<sup>−1</sup> N with CP 8 - 3.5, 12 - 20 kg•ha<sup>−1</sup> P with CP 18 - 4.5 and 32 - 53 kg•ha<sup>−1</sup> K with CP 8-4, from these rates net returns of US$487.23 - 143.30, US$698.16 - 498.3 and US$359.31 - 193.63 could be obtained respectively. To conclude, application of 84, 12 and 40 kg•ha<sup>−1 </sup>N, P and K could be recommended for the production of maize.
文摘小规模农业生产易于出现不合理施肥导致的肥料利用率低等问题,严重影响到生态环境和农业可持续发展。研究建立适合我国小农户集约化农业生产特点且科学轻简的养分推荐方法尤为重要。中国农业科学院农业资源与农业区划研究所会同全国39个土壤肥料研究团队,研发了适合我国农业生态条件和种植体系的基于产量反应和农学效率的作物推荐施肥方法。该方法在汇总分析全国各作物主产区开展的肥料田间试验的基础上,建立了包含作物产量反应、农学效率及养分吸收与利用等信息的数据库。采用QUEFTS(quantitative evaluation of the fertility of tropical soils)模型模拟作物养分吸收,同时对数据库中土壤基础养分供应、作物农学效率与产量反应进行相关分析,建立基于产量反应和农学效率的作物推荐施肥模型。在此基础上,借助计算机技术和智能云计算,研发了“养分专家系统”(简称NE系统),用户只需提供种植地块的一些基本信息,如往年农民习惯措施下的作物产量、施肥历史、有机无机肥料投入以及秸秆还田情况,NE系统就能给出基于该地块的个性化施肥方案。NE系统在推荐施肥中除了考虑土壤基础地力外,还考虑了上季作物养分残效和秸秆还田带入的养分,以及作物轮作体系和有机肥施用情况等,提出的推荐施肥方案符合4R养分管理策略(最佳肥料品种、最佳用量、最佳施用时间和最佳施用位置),同时兼顾施肥的农学、经济和环境效应。多点田间验证试验证实,NE系统推荐施肥兼顾科学性和实用性,且易于掌握,是一种能够保障作物增产增收、提高肥料利用率和保护环境的科学推荐施肥方法。