In order to study the law of nitrogen leaching losses from the paddy field under the condition of drainage, based on the theories of potential energy and solute transport, a water nitrogen dynamic mixed model by comb...In order to study the law of nitrogen leaching losses from the paddy field under the condition of drainage, based on the theories of potential energy and solute transport, a water nitrogen dynamic mixed model by combining the flow net with dynamic method was established. In the computation of buried pipe drainage, the superposition principle was used to simplify the complex solving of the two dimensional problem about water nitrogen transportation in Soil Plant Air Continuous (SPAC) system into several one dimensional problems. The presented method is simple and practical. Some field experiments were carried out to demonstrate the validity of the model.展开更多
The effect of N fertilizer application in ricefield on the environmental quality of ground-water was evaluated using large undisturbedmonolith lysimeters.Soil in lysimeters wassilty-clay-loamy paddy soil(Haplaquept)wi...The effect of N fertilizer application in ricefield on the environmental quality of ground-water was evaluated using large undisturbedmonolith lysimeters.Soil in lysimeters wassilty-clay-loamy paddy soil(Haplaquept)with apH of 6.5,15.4g/kg organic C,1.55g/kg to-tal N,88 mg/kg available N,399 mg/kg A1-abbas-P,67.5 mg/kg exchangeable K,and14.1 cmol/kg CEC.The lysimetry experiment was laid out atHangzhou during the early-rice season(ER,May-Jul)and late-rice season(LR,Jul-Oct)in 1991-1994.Three plot treatments were es-tablished,i.e.,urea plot(UN,applied urea150 kgN/ha per cropping season),ammoniumbicarbonate plot(CN,applied ammonium bi-carbonate 150 kgN/ha per cropping season),and control plot(CK,no N application).Allof the plots also received single superphosphateat 45 kg P/ha and KC1 at 75 kg K/ha.The展开更多
The excessive nitrogen (N) fertilizer input coupled with flood irrigation might result in higher N leaching and lower nitrogen recovery efficiency (NRE). Under an intensive rice system in the Ningxia irrigation re...The excessive nitrogen (N) fertilizer input coupled with flood irrigation might result in higher N leaching and lower nitrogen recovery efficiency (NRE). Under an intensive rice system in the Ningxia irrigation region, China, environmental friendly N management practices are hreavily needed to balance the amount of N input for optimum crop production while minimize the nitrogen loss. The objective of this study was to determine the influences of side-dressing (SD) technique in mechanical transplanting systems on the NRE, N leaching losses and rice yield in anthropogenic-alluvial soil during two rice growing seasons (2010-2011). Four fertilizer N treatments were established, including conventional urea rate (CU, 300 kg ha-1 yr-1); higher SD of controlled-release N fertilizer rate (SD1,176 kg ha-1 yr-1); lower SD of controlled-release N fertilizer rate (SD2, 125 kg ha-1 yr-1); and control (CK, no N fertilizer). Field lysimeters were used to quantify drainage from undisturbed soil during six rice growing stages. Meanwhile, the temporal variations of total nitrigen (TN), NO3--N, and NH4+-N concentrations in percolation water were examined. The results showed that SD1 substantially improved NRE and reduced N leaching losses while maintaining rice yields. Across two years, the averaged NRE under SD1 treatment increased by 25.5% as relative to CU, but yet the rice yield was similar between two treatments. On average, the nitrogen loss defined as TN, NH4+-N, and NO3--N under the SD1 treatment reduced by 27.4, 37.2 and 24.1%, respectively, when compared with CU during the study periods. Although the SD2 treatment could further reduce N leaching loss to some extent, this technique would sharply decline rice yield, with the magnitude of as high as 21.0% relative to CU treatment. Additionally, the average NRE under SD2 was 11.2% lower than that under SD1 treatment. Overall, the present study concluded that the SO technique is an effective strategy to reduce N leaching and increase NRE, thus potentially mitigate local environmental threat. We propose SD1 as a novel alternative fertilizer technique under an irrigated rice-based system in Ningxia irrigation region when higher yields are under consideration.展开更多
文摘In order to study the law of nitrogen leaching losses from the paddy field under the condition of drainage, based on the theories of potential energy and solute transport, a water nitrogen dynamic mixed model by combining the flow net with dynamic method was established. In the computation of buried pipe drainage, the superposition principle was used to simplify the complex solving of the two dimensional problem about water nitrogen transportation in Soil Plant Air Continuous (SPAC) system into several one dimensional problems. The presented method is simple and practical. Some field experiments were carried out to demonstrate the validity of the model.
文摘The effect of N fertilizer application in ricefield on the environmental quality of ground-water was evaluated using large undisturbedmonolith lysimeters.Soil in lysimeters wassilty-clay-loamy paddy soil(Haplaquept)with apH of 6.5,15.4g/kg organic C,1.55g/kg to-tal N,88 mg/kg available N,399 mg/kg A1-abbas-P,67.5 mg/kg exchangeable K,and14.1 cmol/kg CEC.The lysimetry experiment was laid out atHangzhou during the early-rice season(ER,May-Jul)and late-rice season(LR,Jul-Oct)in 1991-1994.Three plot treatments were es-tablished,i.e.,urea plot(UN,applied urea150 kgN/ha per cropping season),ammoniumbicarbonate plot(CN,applied ammonium bi-carbonate 150 kgN/ha per cropping season),and control plot(CK,no N application).Allof the plots also received single superphosphateat 45 kg P/ha and KC1 at 75 kg K/ha.The
基金supported by the National Science and Technology Major Project of China (2014ZX07201009)the Special Foundation for Basic Scientific Research of Central Public Welfare Institute of China (BSRF201306)the Sustainable Agricultural Technique Research and Development Project Phase II between China and Japan
文摘The excessive nitrogen (N) fertilizer input coupled with flood irrigation might result in higher N leaching and lower nitrogen recovery efficiency (NRE). Under an intensive rice system in the Ningxia irrigation region, China, environmental friendly N management practices are hreavily needed to balance the amount of N input for optimum crop production while minimize the nitrogen loss. The objective of this study was to determine the influences of side-dressing (SD) technique in mechanical transplanting systems on the NRE, N leaching losses and rice yield in anthropogenic-alluvial soil during two rice growing seasons (2010-2011). Four fertilizer N treatments were established, including conventional urea rate (CU, 300 kg ha-1 yr-1); higher SD of controlled-release N fertilizer rate (SD1,176 kg ha-1 yr-1); lower SD of controlled-release N fertilizer rate (SD2, 125 kg ha-1 yr-1); and control (CK, no N fertilizer). Field lysimeters were used to quantify drainage from undisturbed soil during six rice growing stages. Meanwhile, the temporal variations of total nitrigen (TN), NO3--N, and NH4+-N concentrations in percolation water were examined. The results showed that SD1 substantially improved NRE and reduced N leaching losses while maintaining rice yields. Across two years, the averaged NRE under SD1 treatment increased by 25.5% as relative to CU, but yet the rice yield was similar between two treatments. On average, the nitrogen loss defined as TN, NH4+-N, and NO3--N under the SD1 treatment reduced by 27.4, 37.2 and 24.1%, respectively, when compared with CU during the study periods. Although the SD2 treatment could further reduce N leaching loss to some extent, this technique would sharply decline rice yield, with the magnitude of as high as 21.0% relative to CU treatment. Additionally, the average NRE under SD2 was 11.2% lower than that under SD1 treatment. Overall, the present study concluded that the SO technique is an effective strategy to reduce N leaching and increase NRE, thus potentially mitigate local environmental threat. We propose SD1 as a novel alternative fertilizer technique under an irrigated rice-based system in Ningxia irrigation region when higher yields are under consideration.