[Objective] The effects of different application amounts of nitrogen, phos-phate and potassium fertilizers on soft rot of konjac were investigated in this study. [Method] The grey correlation analysis was adopted to e...[Objective] The effects of different application amounts of nitrogen, phos-phate and potassium fertilizers on soft rot of konjac were investigated in this study. [Method] The grey correlation analysis was adopted to evaluate the correlation be-tween the application amount of nitrogen, phosphate and potassium fertilizers and the occurrence of soft rot of konjac. [Result] The excessive application of nitrogen fertilizer would induce the occurrence of soft rot of konjac, but the application of potassium fertilizer had a good control effect on soft rot. [Conclusion] The applica-tion amount of nitrogen fertilizer should be control ed reasonably in the planting of konjac, but the application amount of phosphate and potassium fertilizer could be in-creased to some extent, reducing the occurrence of soft rot of konjac.展开更多
In order to explore the technology and effects of reducing nitrogen and potassium fertilizer applications in double-cropping rice,a field plot experiment was conducted to study the effects of optimized application of ...In order to explore the technology and effects of reducing nitrogen and potassium fertilizer applications in double-cropping rice,a field plot experiment was conducted to study the effects of optimized application of nitrogen and potassium fertilizers combined with returning Chinese milk vetch and straw to fields on yield,fertilizer utilization efficiency,net photosynthetic rate(Pn),stomatal conductance(Gs),intercellular CO_(2) concentration(Ci),chlorophyll content(SPAD value)and soil physical and chemical properties in late rice harvest period.The results showed that the optimized application of nitrogen and potassium fertilizers combined with the integrated technology of Chinese milk vetch and straw co-returning to the field could enhance the photosynthetic efficiency of double-cropping rice,increase rice yield,and enhance soil biological activity,especially T4 treatment involving the returning of Chinese milk vetch and straw to the field instead of 30%nitrogen fertilizer achieved the highest rice yield,fertilizer use efficiency,net photosynthetic rate and soil biological activity.Compared with the conventional fertilization treatment T2,the total rice yield of T4 treatment increased by 4.1%,among which the early rice and late rice increased by 6.3%and 2.4%,respectively;Pn,Gs and SPAD values of flag leaves at full heading stage significantly increased,and the contents of soil active organic carbon,alkali hydrolyzed nitrogen,available phosphorus and readily available potassium significantly increased.展开更多
An undisturbed heavy clay soil column experiment was conducted to examine the influence of the new nitrification inhibitor, 3,4- dimethylpyrazole phosphate (DMPP), on nitrogen and soil salt-ion leaching. Regular ure...An undisturbed heavy clay soil column experiment was conducted to examine the influence of the new nitrification inhibitor, 3,4- dimethylpyrazole phosphate (DMPP), on nitrogen and soil salt-ion leaching. Regular urea was selected as the nitrogen source in the soil. The results showed that the cumulative leaching losses of soil nitrate-N under the treatment of urea with DMPP were from 57.5% to 63.3% lower than those of the treatment of urea without DMPP. The use of nitrification inhibitors as nitrate leaching retardants may be a proposal in regulations to prevent groundwater contaminant. However, there were no great difference between urea and urea with DMPP treatments on ammonium-N leaching. Moreover, the soil salt-ion leaching losses of Ca^2+, Mg^2+, K^+, and Na^+ were reduced from 26.6% to 28.8%, 21.3% to 27.8%, 33.3% to 35.5%, and 21.7% to 32.1%, respectively. So, the leaching losses of soil salt-ion were declined for nitrification inhibitor DMPP addition, being beneficial to shallow groundwater protection and growth of crop. These results indicated the possibility of ammonium or ammonium producing compounds using nitrification inhibitor DMPP to control the nitrate and nutrient cation leaching losses, minimizing the risk of nitrate pollution in shallow groundwater.展开更多
To assess the effects of N fertilizer ammonium sulphate nitrate [(NH4)2SO4 plus NH4NO3;ASN] with the new nitrification inhibitor (NI) 3, 4-dimethylpyrazole phosphate (DMPP)(ASN+DMPP) on yield, nitrate accumulation, an...To assess the effects of N fertilizer ammonium sulphate nitrate [(NH4)2SO4 plus NH4NO3;ASN] with the new nitrification inhibitor (NI) 3, 4-dimethylpyrazole phosphate (DMPP)(ASN+DMPP) on yield, nitrate accumulation, and quality of cabbage (Brassica campastrisL. ssp. pekinesis), two field trials were carried out under various soil-climaticconditions in Jinhua City and Xinchang County, Zhejiang Province of China in 2002.Results showed that DMPP could increase the mean yield by+2.0tha-1 in Jinhua, +5.5tha-1 inXinchang, decrease NO3--N content by -9.4% in Jinhua, -7.3% in Xinchang and improvenutritional quality by increasing vitamin C (VC), soluble sugar, K, Fe, Zn contentssignificantly.展开更多
[Objective] This study was conducted to optimize the suitable application amounts of nitrogen fertilizer and phosphate fertilizer for winter wheat.[Method] A field experiment was carried out to investigate the effects...[Objective] This study was conducted to optimize the suitable application amounts of nitrogen fertilizer and phosphate fertilizer for winter wheat.[Method] A field experiment was carried out to investigate the effects of the application amounts of nitrogen fertilizer and phosphate fertilizer on the yield of winter wheat.[Result]The quadratic simulation function between the application of nitrogen fertilizer and wheat yield was y =-0.6611x^2+20.091 x +234.85,with a correlation coefficient of0.970 8,and the yield of winter wheat was the highest at the application amount of nitrogen fertilizer of 228.0 kg/hm^2.The quadratic simulation function between the application of phosphate fertilizer and wheat yield was y =-0.572 6x^2+13.168 x +340.4,with a correlation coefficient of 0.921 95,and the yield of winter wheat was the highest at the application amount of phosphate fertilizer of 172.5 kg/hm^2.[Conclusion] This study provides a scientific basis for the rational application of nitrogen fertilizer and phosphate fertilizer on winter wheat.展开更多
[Objective] The aim was to modify the application amount of N,P and K fertilizer so as to provide a reference for establishing balanced fertilization index system of banana.[Method]The N,P and K fertilizer "3414" te...[Objective] The aim was to modify the application amount of N,P and K fertilizer so as to provide a reference for establishing balanced fertilization index system of banana.[Method]The N,P and K fertilizer "3414" test was carried out on banana,and then regression analysis was performed on the fertilizer effect.Ternary quadratic,binary quadric and one-variable quadratic regression equations for the fertilizer effect on the banana yield were constructed.[Result]Suitable amount of N,P and K fertilizer had significant yield improving effect,whereas overdose of fertilizer application led to decreasing of utilization rate of fertilizer.Therefore,suitable amount of N,P and K fertilizer should be selected in production.It could be concluded that one-variable quadratic regression equations was the best model to calculate the suitable fertilizer amount.The best yield range of banana in the tested field was 44.193-45.904 t/hm2,while the corresponding optimum application amount of N,P2O5 and K2O was 795.1,262.3 and 1 236.9 kg/hm2 respectively,and the ratio among nitrogen,phosphorus and potassium are 1∶0.33∶1.55.[Conclusion]The result in this study could provide references for the soil types similar to the tested field.展开更多
Nitrogen(N),phosphorus(P),and potassium(K)are important for plant growth and development.MicroRNAs(miRNAs)play important roles in regulating plant response to nutrient(N,P,and K)deficiencies.Several miRNAs have been i...Nitrogen(N),phosphorus(P),and potassium(K)are important for plant growth and development.MicroRNAs(miRNAs)play important roles in regulating plant response to nutrient(N,P,and K)deficiencies.Several miRNAs have been identified under nutrient deficiency conditions in many plant species.However,the manner in which miRNAs regulate the interaction between NPK signaling pathways under multiple nutrient deficiency remains largely unknown.We systematically compared and identified microRNAs involved in both single and triple NPK nutrient deficiency responses.We identified 32 shoot and 17 root miRNAs differentially expressed under potassium deficiency.Several NP starvation-associated miRNAs including miR169s and miR399s,were also regulated by K deficiency.Several identified miRNAs including miR5565c,miR5564,and miR1432 have not previously been associated with respectively N,P,and K deficiency(−N,−P,and−K).Expression correlation analysis between miRNAs and their predicted targets showed that miR169,miR172,and miR160 displayed expression trends exactly opposite to those of their corresponding predicted targets.Of 550 predicted novel miRNAs,novel_mir_42 was upregulated in shoots under−K but was downregulated under−N and−P.The effects of combined NPK starvation were not a simple addition of the individual stresses on sorghum seedlings.The identified common and specific differentially expressed miRNAs were observed under single and combined NPK deficiencies.These findings will help to further elucidate the functions of microRNAs and their interactions under multiple nutrient deficiency.展开更多
[Objectives]This study was conducted to explore the rational formula for rice fertilization in Jianghan Plain.[Methods]An experiment on the combined application of nitrogen,phosphorus and potassium fertilizers was car...[Objectives]This study was conducted to explore the rational formula for rice fertilization in Jianghan Plain.[Methods]An experiment on the combined application of nitrogen,phosphorus and potassium fertilizers was carried out in Jianghan Plain,an important rice producing area in Hubei,with a total of five treatments to study the effects of nitrogen,phosphorus and potassium fertilizers on the fertilizer use efficiency and yield of rice.[Results]Fertilization had a significant effect on improving rice yield,and nitrogen fertilizer had the greatest effect on rice yield,followed by potassium fertilizer and phosphorous fertilizer.[Conclusions]This study provides a scientific basis for the application of rice fertilizers and the reduction and efficiency improvement of chemical fertilizers in Jianghan Plain.展开更多
Nitrogen and potassium are important nutrientelements for rice.Besides supplied by the or- ganic manure,potassium nutrition of ricecomes dominantly from purple soils in Sichuanbasin.Potassium exists abundantly in mine...Nitrogen and potassium are important nutrientelements for rice.Besides supplied by the or- ganic manure,potassium nutrition of ricecomes dominantly from purple soils in Sichuanbasin.Potassium exists abundantly in mineralforms in the purple soils.Availability of soilpotassium for crop depends on the potassiumforms,the uptake ability of crops,and fertiliz-er practices.A pot culture experiment wasconducted to study the kinetics of potassiumuptake in the purple soil(total N 22.64g·kg,total K 24.36g·kg,available N 102.6mg·kg,available K 140.6mg·kg,acidsoluble K 936.0mg·kg,and pH 6.8).Ma-terials used were three Fhybrid rices,Eryou展开更多
Bt cotton hybrids require large supply of metabolites to support their greater boll load and commonly suffer from premature leaf senescence. A field experiment was conducted to study the nutritional status of Bt cotto...Bt cotton hybrids require large supply of metabolites to support their greater boll load and commonly suffer from premature leaf senescence. A field experiment was conducted to study the nutritional status of Bt cotton leaves during boll development stage and to evaluate the most profitable source of foliar fertilizers. Treatments included basal application of 0 and 60 kg·K2O·ha-1 as muriate of potash (MOP) in main plots and foliar spray treatments viz: 4 & 6 sprays of 2% potassium nitrate (Multi-K, 13-00-45), 4 & 6 sprays of NPK Blend (Polyfed, 19-19-19), 4 sprays of MOP, 4 sprays of MOP + urea (to supply same amount of N & K as in potassium nitrate) and unsprayed control in sub plots. The results revealed that only N and K contents of premature senesced leaves were below the sufficiency range for cotton sufficient levels of P, Fe, Mn, Zn and Cu were observed. Though the concentrations of N and K in both the petiole and leaf blade initially improved with foliar spray, N content declined below the unsprayed control at later stages. Basal application of MOP increased seed cotton yield by 19%. Four foliar sprays of KNO3, NPK, MOP and MOP + urea recorded yield increase in seed cotton yield of 22.8%, 22.4%, 18.5% and 24.5%, respectively over unsprayed control. Six sprays of KNO3 and NPK had no yield advantage over four sprays and rather proved economically less viable.展开更多
基金Supported by Scientific Research Fund of Yunnan Provincial Department of Education(2012C1402012Z024)~~
文摘[Objective] The effects of different application amounts of nitrogen, phos-phate and potassium fertilizers on soft rot of konjac were investigated in this study. [Method] The grey correlation analysis was adopted to evaluate the correlation be-tween the application amount of nitrogen, phosphate and potassium fertilizers and the occurrence of soft rot of konjac. [Result] The excessive application of nitrogen fertilizer would induce the occurrence of soft rot of konjac, but the application of potassium fertilizer had a good control effect on soft rot. [Conclusion] The applica-tion amount of nitrogen fertilizer should be control ed reasonably in the planting of konjac, but the application amount of phosphate and potassium fertilizer could be in-creased to some extent, reducing the occurrence of soft rot of konjac.
文摘In order to explore the technology and effects of reducing nitrogen and potassium fertilizer applications in double-cropping rice,a field plot experiment was conducted to study the effects of optimized application of nitrogen and potassium fertilizers combined with returning Chinese milk vetch and straw to fields on yield,fertilizer utilization efficiency,net photosynthetic rate(Pn),stomatal conductance(Gs),intercellular CO_(2) concentration(Ci),chlorophyll content(SPAD value)and soil physical and chemical properties in late rice harvest period.The results showed that the optimized application of nitrogen and potassium fertilizers combined with the integrated technology of Chinese milk vetch and straw co-returning to the field could enhance the photosynthetic efficiency of double-cropping rice,increase rice yield,and enhance soil biological activity,especially T4 treatment involving the returning of Chinese milk vetch and straw to the field instead of 30%nitrogen fertilizer achieved the highest rice yield,fertilizer use efficiency,net photosynthetic rate and soil biological activity.Compared with the conventional fertilization treatment T2,the total rice yield of T4 treatment increased by 4.1%,among which the early rice and late rice increased by 6.3%and 2.4%,respectively;Pn,Gs and SPAD values of flag leaves at full heading stage significantly increased,and the contents of soil active organic carbon,alkali hydrolyzed nitrogen,available phosphorus and readily available potassium significantly increased.
文摘An undisturbed heavy clay soil column experiment was conducted to examine the influence of the new nitrification inhibitor, 3,4- dimethylpyrazole phosphate (DMPP), on nitrogen and soil salt-ion leaching. Regular urea was selected as the nitrogen source in the soil. The results showed that the cumulative leaching losses of soil nitrate-N under the treatment of urea with DMPP were from 57.5% to 63.3% lower than those of the treatment of urea without DMPP. The use of nitrification inhibitors as nitrate leaching retardants may be a proposal in regulations to prevent groundwater contaminant. However, there were no great difference between urea and urea with DMPP treatments on ammonium-N leaching. Moreover, the soil salt-ion leaching losses of Ca^2+, Mg^2+, K^+, and Na^+ were reduced from 26.6% to 28.8%, 21.3% to 27.8%, 33.3% to 35.5%, and 21.7% to 32.1%, respectively. So, the leaching losses of soil salt-ion were declined for nitrification inhibitor DMPP addition, being beneficial to shallow groundwater protection and growth of crop. These results indicated the possibility of ammonium or ammonium producing compounds using nitrification inhibitor DMPP to control the nitrate and nutrient cation leaching losses, minimizing the risk of nitrate pollution in shallow groundwater.
基金supported by the National Natural Science Foundation of China(30370838)Science and Technology Committee of Zhejiang Province,China(021102084)BASF Company of Germany.
文摘To assess the effects of N fertilizer ammonium sulphate nitrate [(NH4)2SO4 plus NH4NO3;ASN] with the new nitrification inhibitor (NI) 3, 4-dimethylpyrazole phosphate (DMPP)(ASN+DMPP) on yield, nitrate accumulation, and quality of cabbage (Brassica campastrisL. ssp. pekinesis), two field trials were carried out under various soil-climaticconditions in Jinhua City and Xinchang County, Zhejiang Province of China in 2002.Results showed that DMPP could increase the mean yield by+2.0tha-1 in Jinhua, +5.5tha-1 inXinchang, decrease NO3--N content by -9.4% in Jinhua, -7.3% in Xinchang and improvenutritional quality by increasing vitamin C (VC), soluble sugar, K, Fe, Zn contentssignificantly.
文摘[Objective] This study was conducted to optimize the suitable application amounts of nitrogen fertilizer and phosphate fertilizer for winter wheat.[Method] A field experiment was carried out to investigate the effects of the application amounts of nitrogen fertilizer and phosphate fertilizer on the yield of winter wheat.[Result]The quadratic simulation function between the application of nitrogen fertilizer and wheat yield was y =-0.6611x^2+20.091 x +234.85,with a correlation coefficient of0.970 8,and the yield of winter wheat was the highest at the application amount of nitrogen fertilizer of 228.0 kg/hm^2.The quadratic simulation function between the application of phosphate fertilizer and wheat yield was y =-0.572 6x^2+13.168 x +340.4,with a correlation coefficient of 0.921 95,and the yield of winter wheat was the highest at the application amount of phosphate fertilizer of 172.5 kg/hm^2.[Conclusion] This study provides a scientific basis for the rational application of nitrogen fertilizer and phosphate fertilizer on winter wheat.
基金Supported by National Science and Technology Support Program(2007BAD89B14)Science and Technology Project of Guangdong Province(2009B020201011)~~
文摘[Objective] The aim was to modify the application amount of N,P and K fertilizer so as to provide a reference for establishing balanced fertilization index system of banana.[Method]The N,P and K fertilizer "3414" test was carried out on banana,and then regression analysis was performed on the fertilizer effect.Ternary quadratic,binary quadric and one-variable quadratic regression equations for the fertilizer effect on the banana yield were constructed.[Result]Suitable amount of N,P and K fertilizer had significant yield improving effect,whereas overdose of fertilizer application led to decreasing of utilization rate of fertilizer.Therefore,suitable amount of N,P and K fertilizer should be selected in production.It could be concluded that one-variable quadratic regression equations was the best model to calculate the suitable fertilizer amount.The best yield range of banana in the tested field was 44.193-45.904 t/hm2,while the corresponding optimum application amount of N,P2O5 and K2O was 795.1,262.3 and 1 236.9 kg/hm2 respectively,and the ratio among nitrogen,phosphorus and potassium are 1∶0.33∶1.55.[Conclusion]The result in this study could provide references for the soil types similar to the tested field.
基金This research was supported by the National Key Research and Development Program of China(2018YFD1000701,2018YFD1000700)the China Agriculture Research System(CARS-06-13.5-A3)the National Natural Science Foundation of China(31301393).
文摘Nitrogen(N),phosphorus(P),and potassium(K)are important for plant growth and development.MicroRNAs(miRNAs)play important roles in regulating plant response to nutrient(N,P,and K)deficiencies.Several miRNAs have been identified under nutrient deficiency conditions in many plant species.However,the manner in which miRNAs regulate the interaction between NPK signaling pathways under multiple nutrient deficiency remains largely unknown.We systematically compared and identified microRNAs involved in both single and triple NPK nutrient deficiency responses.We identified 32 shoot and 17 root miRNAs differentially expressed under potassium deficiency.Several NP starvation-associated miRNAs including miR169s and miR399s,were also regulated by K deficiency.Several identified miRNAs including miR5565c,miR5564,and miR1432 have not previously been associated with respectively N,P,and K deficiency(−N,−P,and−K).Expression correlation analysis between miRNAs and their predicted targets showed that miR169,miR172,and miR160 displayed expression trends exactly opposite to those of their corresponding predicted targets.Of 550 predicted novel miRNAs,novel_mir_42 was upregulated in shoots under−K but was downregulated under−N and−P.The effects of combined NPK starvation were not a simple addition of the individual stresses on sorghum seedlings.The identified common and specific differentially expressed miRNAs were observed under single and combined NPK deficiencies.These findings will help to further elucidate the functions of microRNAs and their interactions under multiple nutrient deficiency.
文摘[Objectives]This study was conducted to explore the rational formula for rice fertilization in Jianghan Plain.[Methods]An experiment on the combined application of nitrogen,phosphorus and potassium fertilizers was carried out in Jianghan Plain,an important rice producing area in Hubei,with a total of five treatments to study the effects of nitrogen,phosphorus and potassium fertilizers on the fertilizer use efficiency and yield of rice.[Results]Fertilization had a significant effect on improving rice yield,and nitrogen fertilizer had the greatest effect on rice yield,followed by potassium fertilizer and phosphorous fertilizer.[Conclusions]This study provides a scientific basis for the application of rice fertilizers and the reduction and efficiency improvement of chemical fertilizers in Jianghan Plain.
文摘Nitrogen and potassium are important nutrientelements for rice.Besides supplied by the or- ganic manure,potassium nutrition of ricecomes dominantly from purple soils in Sichuanbasin.Potassium exists abundantly in mineralforms in the purple soils.Availability of soilpotassium for crop depends on the potassiumforms,the uptake ability of crops,and fertiliz-er practices.A pot culture experiment wasconducted to study the kinetics of potassiumuptake in the purple soil(total N 22.64g·kg,total K 24.36g·kg,available N 102.6mg·kg,available K 140.6mg·kg,acidsoluble K 936.0mg·kg,and pH 6.8).Ma-terials used were three Fhybrid rices,Eryou
文摘Bt cotton hybrids require large supply of metabolites to support their greater boll load and commonly suffer from premature leaf senescence. A field experiment was conducted to study the nutritional status of Bt cotton leaves during boll development stage and to evaluate the most profitable source of foliar fertilizers. Treatments included basal application of 0 and 60 kg·K2O·ha-1 as muriate of potash (MOP) in main plots and foliar spray treatments viz: 4 & 6 sprays of 2% potassium nitrate (Multi-K, 13-00-45), 4 & 6 sprays of NPK Blend (Polyfed, 19-19-19), 4 sprays of MOP, 4 sprays of MOP + urea (to supply same amount of N & K as in potassium nitrate) and unsprayed control in sub plots. The results revealed that only N and K contents of premature senesced leaves were below the sufficiency range for cotton sufficient levels of P, Fe, Mn, Zn and Cu were observed. Though the concentrations of N and K in both the petiole and leaf blade initially improved with foliar spray, N content declined below the unsprayed control at later stages. Basal application of MOP increased seed cotton yield by 19%. Four foliar sprays of KNO3, NPK, MOP and MOP + urea recorded yield increase in seed cotton yield of 22.8%, 22.4%, 18.5% and 24.5%, respectively over unsprayed control. Six sprays of KNO3 and NPK had no yield advantage over four sprays and rather proved economically less viable.