期刊文献+
共找到2,133篇文章
< 1 2 107 >
每页显示 20 50 100
Transgenic approaches for improving use efficiency of nitrogen, phosphorus and potassium in crops 被引量:13
1
作者 TENG Wan HE Xue TONG Yi-ping 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第12期2657-2673,共17页
The success of the Green Revolution largely relies on fertilizers, and a new Green Revolution is very much needed to use fertilizers more economically and efficiently, as well as with more environmental responsibility... The success of the Green Revolution largely relies on fertilizers, and a new Green Revolution is very much needed to use fertilizers more economically and efficiently, as well as with more environmental responsibility. The use efficiency of nitrogen, phosphorus, and potassium is controlled by complex gene networks that co-ordinate uptake, re-distribution, assimilation, and storage of these nutrients. Great progress has been made in breeding nutrient-efficient crops by molecularly engineering root traits desirable for efficient acquisition of nutrients from soil, transporters for uptake, redistribution and homeostasis of nutrients, and enzymes for efficient assimilation. Regulatory and transcription factors modulating these processes are also valuable in breeding crops with improved nutrient use efficiency and yield performance. 展开更多
关键词 nutrient use efficiency nitrogen phosphorus potassium transgenic approach crop
下载PDF
Impact of Nitrogen, Phosphorus and Potassium on Brown Planthopper and Tolerance of Its Host Rice Plants 被引量:12
2
作者 Md Mamunur RASHID Mahbuba JAHAN Khandakar Shariful ISLAM 《Rice science》 SCIE CSCD 2016年第3期119-131,共13页
The brown planthopper(BPH),Nilaparvata lugens(St?l),appeared as a devastating pest of rice in Asia. Experiments were conducted to study the effects of three nutrients,nitrogen(N),phosphorus(P) and potassium(K),on BPH ... The brown planthopper(BPH),Nilaparvata lugens(St?l),appeared as a devastating pest of rice in Asia. Experiments were conducted to study the effects of three nutrients,nitrogen(N),phosphorus(P) and potassium(K),on BPH and its host rice plants. Biochemical constituents of BPH and rice plants with varying nutrient levels at different growth stages,and changes in relative water content(RWC) of rice plants were determined in the laboratory. Feeding of BPH and the tolerance of rice plants to BPH with different nutrient levels were determined in the nethouse. Concentrations of N and P were found much higher in the BPH body than in its host rice plants,and this elemental mismatch is an inherent constraint on meeting nutritional requirements of BPH. Nitrogen was found as a more limiting element for BPH than other nutrients in rice plants. Application of N fertilizers to the rice plants increased the N concentrations both in rice plants and BPH while application of P and K fertilizers increased their concentrations in plant tissues only but not in BPH. Nitrogen application also increased the level of soluble proteins and decreased silicon content in rice plants,which resulted in increased feeding of BPH with sharp reduction of RWC in rice plants ultimately caused susceptible to the pest. P fertilization increased the concentration of P in rice plant tissues but not changed N,K,Si,free sugar and soluble protein contents,which indicated little importance of P to the feeding of BPH and tolerance of plant against BPH. K fertilization increased K content but reduced N,Si,free sugar and soluble protein contents in the plant tissues which resulted in the minimum reduction of RWC in rice plants after BPH feeding,thereby contributed to higher tolerance of rice plants to brown planthopper. 展开更多
关键词 NILAPARVATA LUGENS relative water content HOST tolerance nitrogen phosphorus potassium rice nutrient subsidy
下载PDF
Identification of microRNAs involved in crosstalk between nitrogen, phosphorus and potassium under multiple nutrient deficiency in sorghum 被引量:5
3
作者 Zhenxing Zhu Dan Li +1 位作者 Ling Cong Xiaochun Lu 《The Crop Journal》 SCIE CSCD 2021年第2期465-475,共11页
Nitrogen(N),phosphorus(P),and potassium(K)are important for plant growth and development.MicroRNAs(miRNAs)play important roles in regulating plant response to nutrient(N,P,and K)deficiencies.Several miRNAs have been i... Nitrogen(N),phosphorus(P),and potassium(K)are important for plant growth and development.MicroRNAs(miRNAs)play important roles in regulating plant response to nutrient(N,P,and K)deficiencies.Several miRNAs have been identified under nutrient deficiency conditions in many plant species.However,the manner in which miRNAs regulate the interaction between NPK signaling pathways under multiple nutrient deficiency remains largely unknown.We systematically compared and identified microRNAs involved in both single and triple NPK nutrient deficiency responses.We identified 32 shoot and 17 root miRNAs differentially expressed under potassium deficiency.Several NP starvation-associated miRNAs including miR169s and miR399s,were also regulated by K deficiency.Several identified miRNAs including miR5565c,miR5564,and miR1432 have not previously been associated with respectively N,P,and K deficiency(−N,−P,and−K).Expression correlation analysis between miRNAs and their predicted targets showed that miR169,miR172,and miR160 displayed expression trends exactly opposite to those of their corresponding predicted targets.Of 550 predicted novel miRNAs,novel_mir_42 was upregulated in shoots under−K but was downregulated under−N and−P.The effects of combined NPK starvation were not a simple addition of the individual stresses on sorghum seedlings.The identified common and specific differentially expressed miRNAs were observed under single and combined NPK deficiencies.These findings will help to further elucidate the functions of microRNAs and their interactions under multiple nutrient deficiency. 展开更多
关键词 SORGHUM MicroRNA nitrogen PHOSPHATE potassium
下载PDF
Evolution of Nitrogen, Phosphorus and Potassium Fertilizer Application Rates in Cotton Fields and Its Influences on Cotton Yield in the Yangtze River Valley
4
作者 Naiyin XU Jian LI 《Agricultural Science & Technology》 CAS 2014年第10期1727-1729,1792,共4页
[Objective] The historical evolution pattern of nitrogen (N), phosphorus (P) and potassium (K) fertilizer application rate and its effects on lint cotton yield were explored to provide the theoretical basis for ... [Objective] The historical evolution pattern of nitrogen (N), phosphorus (P) and potassium (K) fertilizer application rate and its effects on lint cotton yield were explored to provide the theoretical basis for reasonable fertilizer management strate-gy in the cotton planting region of the Yangtze River Val ey. [Method] GGE biplot analysis method was adopted to analyze the correlation among N, P and K fertilizer application rate and lint cotton yield with the dataset of national cotton regional trials of the Yangtze River Val ey during 1991-2013. The linear and nonlinear regression analysis method was used to reveal the evolution of the fertilizer applying patterns, and analyze the effects of N, P, K application rates on cotton lint yield. [Result] The application rates of N, P and K fertilizer presented highly significant positive corre-lation with lint cotton yield, among which the potassium fertilizer was the strongest relative factor with lint cotton yield, fol owed by phosphorus fertilizer, while nitrogen fertilizer was the weakest factor. The application rate of nitrogen fertilizer was relat-ed with the test year in the pattern of a quadratic function, while phosphate and potassium had progressive increase linear relation with the test year in the cotton planting region of the Yangtze River Val ey. Meanwhile, cotton lint yield was in re-sponse to nitrogen fertilizer content increase with a quadratic parabola function, and increased with the applying phosphate fertilizer and potassium fertilizer content with linearly increasing function. [Conclusion] The increasing application amount of N, P and K fertilizer was general y beneficial to cotton yield improvements, however, ex-orbitant applying nitrogen fertilizer was unfavorable for cotton production, and a reasonable mixture formula of N, P and K fertilizer was better in terms of cotton yield-increasing effect. 展开更多
关键词 Cotton (Gossypium hirsutum L.) GGE biplot nitrogen phosphorus andpotassium fertilizer The Yangtze River Valley
下载PDF
Environmental dynamics of nitrogen and phosphorus release from river sediments of arid areas
5
作者 SU Wenhao WU Chengcheng +4 位作者 Sun Xuanxuan LEI Rongrong LEI Li WANG Ling ZHU Xinping 《Journal of Arid Land》 SCIE CSCD 2024年第5期685-698,共14页
Human activities lead to the accumulation of a large amount of nitrogen and phosphorus in sediments in rivers.Simultaneously,nitrogen and phosphorus can be affected by environment and re-enter the upper water body,cau... Human activities lead to the accumulation of a large amount of nitrogen and phosphorus in sediments in rivers.Simultaneously,nitrogen and phosphorus can be affected by environment and re-enter the upper water body,causing secondary pollution of the river water.In this study,laboratory simulation experiments were conducted initially to investigate the release of nitrogen and phosphorus from river sediments in Urumqi City and the surrounding areas in Xinjiang Uygur Autonomous Region of China and determine the factors that influence their release.The results of this study showed significant short-term differences in nitrogen and phosphorus release characteristics from sediments at different sampling points.The proposed secondary kinetics model(i.e.,pseudo-second-order kinetics model)better fitted the release process of sediment nitrogen and phosphorus.The release of nitrogen and phosphorus from sediments is a complex process driven by multiple factors,therefore,we tested the influence of three factors(pH,temperature,and disturbance intensity)on the release of nitrogen and phosphorus from sediments in this study.The most amount of nitrate nitrogen(NO_(3)^(–)-N)was released under neutral conditions,while the most significant release of ammonia nitrogen(NH_(4)^(+)-N)occurred under acidic and alkaline conditions.The release of nitrite nitrogen(NO_(2)^(-)-N)was less affected by pH.The dissolved total phosphorus(DTP)released significantly in the alkaline water environment,while the release of dissolved organic phosphorus(DOP)was more significant in acidic water.The release amount of soluble reactive phosphorus(SRP)increased with an increase in pH.The sediments released nitrogen and phosphorus at higher temperatures,particularly NH_(4)^(+)-N,NO_(3)^(–)-N,and SRP.The highest amount of DOP was released at 15.0℃.An increase in disturbance intensity exacerbated the release of nitrogen and phosphorus from sediments.NH_(4)^(+)-N,DTP,and SRP levels increased linearly with the intensity of disturbance,while NO_(3)^(–)-N and NO_(2)^(–)-N were more stable.This study provides valuable information for protecting and restoring the water environment in arid areas and has significant practical reference value. 展开更多
关键词 SEDIMENT nitrogen and phosphorus environmental dynamics pseudo-second-order kinetics model dissolved organic phosphorus(DOP) Urumqi City
下载PDF
Degree of shade tolerance shapes seasonality of chlorophyll, nitrogen and phosphorus levels of trees and herbs in a temperate deciduous forest
6
作者 Jiajia Zeng Fan Liu +5 位作者 Yuan Zhu Jiayi Li Ying Ruan Xiankui Quan Chuankuan Wang Xingchang Wang 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第4期60-72,共13页
Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types withi... Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types within the canopy are poorly quantified.In this study,the seasonality of leaf chlorophyll,nitrogen(N),and phosphorus(P)were quantified vertically along the canopy of four major tree species and two types of herbs in a temperate deciduous forest.The role of shade tolerance in shaping the seasonal variation and vertical differentiation was examined.During the entire season,chlorophyll content showed a distinct asymmetric unimodal pattern for all species,with greater chlorophyll levels in autumn than in spring,and the timing of peak chlorophyll per leaf area gradually decreased as shade tolerance increased.Chlorophyll a:b ratios gradually decreased with increasing shade tolerance.Leaf N and P contents sharply declined during leaf expansion,remained steady in the mature stage and decreased again during leaf senescence.Over the seasons,the lower canopy layer had significantly higher chlorophyll per leaf mass but not chlorophyll per leaf area than the upper canopy layer regardless of degree of shade tolerance.However,N and P per leaf area of intermediate shade-tolerant and fully shade-tolerant tree species were significantly higher in the upper canopy than in the lower.Seasonal variations in N:P ratios suggest changes in N or P limitation.These findings indicate that shade tolerance is a key feature shaping inter-specific differences in leaf chlorophyll,N,and P contents as well as their seasonality in temperate deciduous forests,which have significant implications for modeling leaf photosynthesis and ecosystem production. 展开更多
关键词 Leaf traits Leaf nutrients Seasonal variations CHLOROPHYLL nitrogen phosphorus Shade tolerance Canopy layers
下载PDF
Correlation and Pathway Analysis of the Carbon,Nitrogen,and Phosphorus in Soil-Microorganism-Plant with Main Quality Components of Tea(Camellia sinensis)
7
作者 Chun Mao Ji He +3 位作者 Xuefeng Wen Yangzhou Xiang Jihong Feng Yingge Shu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期487-502,共16页
The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.Howev... The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.However,few studies have quantified the effects of these factors on the main quality components of tea.The study aimed to explore the interactions of C,N,and P in soil-microorganisms-plants and the effects of these factors on the main quality components of tea by using the path analysis method.The results indicated that(1)The contents of C,N,and P in soil,microorganisms,and tea plants were highly correlated and collinear,and showed significant correlations with the main quality components of tea.(2)Optimal regression equations were established to esti-mate tea polyphenol,amino acid,catechin,caffeine,and water extract content based on C,N,and P contents in soil,microorganisms,and tea plants(R^(2)=0.923,0.726,0.954,0.848,and 0.883,respectively).(3)Pathway analysis showed that microbial biomass phosphorus(MBP),root phosphorus,branch nitrogen,and microbial biomass carbon(MBC)were the largest direct impact factors on tea polyphenol,catechin,water extracts,amino acid,and caffeine content,respectively.Leaf carbon,root phosphorus,and leaf nitrogen were the largest indirect impact factors on tea polyphenol,catechin,and water extract content,respectively.Leaf carbon indirectly affected tea polyphenol content mainly by altering MBP content.Root phosphorus indirectly affected catechin content mainly by altering soil organic carbon content.Leaf nitrogen indirectly affected water extract content mainly by altering branch nitrogen content.The research results provide the scientific basis for reasonable fertilization in tea gardens and tea quality improvement. 展开更多
关键词 Soil-microorganisms-plant system CARBON nitrogen phosphorus tea quality path analysis
下载PDF
Effects of tree size and organ age on variations in carbon,nitrogen,and phosphorus stoichiometry in Pinus koraiensis
8
作者 Yanjun Wang Guangze Jin Zhili Liu 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第3期155-165,共11页
Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutr... Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutrients vary with tree size,organ age,or root order at the individual level remains limited.We determined C,N,and P contents and their stoichiometric ratios(i.e.,nutrient traits)in needles,branches,and fine roots at different organ ages(0-3-year-old needles and branches)and root orders(1st-4th order roots)from 64 Pinus koraiensis of varying size(Diameter at breast height ranged from 0.3 to 100 cm)in northeast China.Soil factors were also measured.The results show that nutrient traits were regulated by tree size,organ age,or root order rather than soil factors.At a whole-plant level,nutrient traits decreased in needles and fine roots but increased in branches with tree size.At the organ level,age or root order had a negative effect on C,N,and P and a positive effect on stoichiometric ratios.Our results demonstrate that nutrient variations are closely related to organ-specific functions and ecophysiological processes at an individual level.It is suggested that the nutrient acquisition strategy by younger trees and organ fractions with higher nutrient content is for survival.Conversely,nutrient storage strategy in older trees and organ fractions are mainly for steady growth.Our results clarified the nutrient utilization strategies during tree and organ ontogeny and suggest that tree size and organ age or root order should be simultaneously considered to understand the complexities of nutrient variations. 展开更多
关键词 Tree size Organ age(or root order) Carbon(C) nitrogen(N) phosphorus(P) Pinus koraiensis
下载PDF
Nitrogen and Phosphorus Removal from Lake Kinneret Inputs
9
作者 Moshe Gophen 《Open Journal of Ecology》 2024年第2期165-182,共18页
The Hula Valley was drained in 1957. The land use was modified from natural wetland and old shallow lake ecosystems to agricultural development. About half of the drained land area was utilized for aquaculture. Popula... The Hula Valley was drained in 1957. The land use was modified from natural wetland and old shallow lake ecosystems to agricultural development. About half of the drained land area was utilized for aquaculture. Population size was enhanced and the diary was developed intensively resulting in the enhancement of domestic and husbandry sewage production that increased as well. The natural intact Hula Valley-Lake Kinneret ecosystem was heavily anthropogenically interrupted: The Hula was drained and Kinneret became a national source for domestic water supply. Some aspects of the environmental and water quality protection policy of the system are presented. The causation and operational management implications for the reduction of Nitrogen and Phosphorus migration from the Hula Valley are discussed. Drastic (81%) restriction of aquaculture accompanied by sewage totally removed achieved a reasonable improvement in pollution control which was also supported by the Hula Project. The implications of anthropogenic intervention in the process of environmental management design are presented. 展开更多
关键词 Hula Valley JORDAN Kinneret nitrogen phosphorus Peat Soil Fish Ponds Sewage Removal
下载PDF
Effects of Different Nitrogen and Phosphorus Synergistic Fertilizer on Enzymes and Genes Related to Nitrogen Metabolism in Wheat
10
作者 Yajun Li Yihui Wang +2 位作者 Shuang Chen Yu Gao Yan Shi 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第7期2151-2164,共14页
In recent years,in order to improve nutrient use efficiency,especially nitrogen use efficiency,fertilizer valueadded technology has been developed rapidly.However,the mechanism of the effect of synergistic fertilizer ... In recent years,in order to improve nutrient use efficiency,especially nitrogen use efficiency,fertilizer valueadded technology has been developed rapidly.However,the mechanism of the effect of synergistic fertilizer on plant nitrogen utilization is not clear.A study was,therefore,conducted to explore the activities and gene expression of key enzymes for nitrogen assimilation and the gene expression of nitrogen transporters in wheat after the application of synergistic fertilizer.Soil column experiment was set up in Qingdao Agricultural University experimental base from October 2018 to June 2019.Maleic acid and itaconic acid were copolymerized with acrylic acid as cross-linking monomer to make a fluid gel,which was sprayed on the fertilizer surface to make nitrogen and phosphorus synergistic fertilizer.A total of 6 treatments was set according to different nitrogen and phosphorus fertilizer ratios:(1)100%common nitrogen fertilizer+100%common phosphate fertilizer(2)70%nitrogen synergistic fertilizer+100%phosphorus synergistic fertilizer;(3)100%nitrogen synergistic fertilizer+70%phosphorus synergistic fertilizer;(4)100%nitrogen synergistic fertilizer+100%phosphorus synergistic fertilizer;(5)70%nitrogen synergistic fertilizer+70%phosphorus synergistic fertilizer;(6)100%commercial nitrogen synergistic fertilizer+100%commercial phosphorus synergistic fertilizer.The results are as follows:(1)the enzyme activities of wheat plants under synergistic fertilizer condition were higher than those under ordinary fertilizer,except under the treatment that nitrogen and phosphorus synergistic fertilizer were both reduced;(2)the expression level of the genes under the treatment“100%nitrogen synergistic fertilizer+100%phosphorus synergistic fertilizer”was significantly higher than those in other treatments.Combined with the higher performance of nitrogen concentration in various parts of the plant under the condition of applying synergistic fertilizer,this study indicated that the application of synergistic fertilizer can improve the nitrogen metabolism of the plant by increasing the nitrogen level in the rhizosphere soil,inducing the expression of nitrogen transporter genes and key assimilation enzymes genes. 展开更多
关键词 nitrogen and phosphorus synergistic fertilizer nitrogen transporter gene nitrogen assimilation enzyme activity
下载PDF
Effects of nitrogen and phosphorus additions on soil microbial community structure and ecological processes in the farmland of Chinese Loess Plateau
11
作者 KOU Zhaoyang LI Chunyue +5 位作者 CHANG Shun MIAO Yu ZHANG Wenting LI Qianxue DANG Tinghui WANG Yi 《Journal of Arid Land》 SCIE CSCD 2023年第8期960-974,共15页
Microorganisms regulate the responses of terrestrial ecosystems to anthropogenic nutrient inputs.The escalation of anthropogenic activities has resulted in a rise in the primary terrestrial constraining elements,namel... Microorganisms regulate the responses of terrestrial ecosystems to anthropogenic nutrient inputs.The escalation of anthropogenic activities has resulted in a rise in the primary terrestrial constraining elements,namely nitrogen(N)and phosphorus(P).Nevertheless,the specific mechanisms governing the influence of soil microbial community structure and ecological processes in ecologically vulnerable and delicate semi-arid loess agroecosystems remain inadequately understood.Therefore,we explored the effects of different N and P additions on soil microbial community structure and its associated ecological processes in the farmland of Chinese Loess Plateau based on a 36-a long-term experiment.Nine fertilization treatments with complete interactions of high,medium,and low N and P gradients were set up.Soil physical and chemical properties,along with the microbial community structure were measured in this study.Additionally,relevant ecological processes such as microbial biomass,respiration,N mineralization,and enzyme activity were quantified.To elucidate the relationships between these variables,we examined correlation-mediated processes using statistical techniques,including redundancy analysis(RDA)and structural equation modeling(SEM).The results showed that the addition of N alone had a detrimental effect on soil microbial biomass,mineralized N accumulation,andβ-1,4-glucosidase activity.Conversely,the addition of P exhibited an opposing effect,leading to positive influences on these soil parameters.The interactive addition of N and P significantly changed the microbial community structure,increasing microbial activity(microbial biomass and soil respiration),but decreasing the accumulation of mineralized N.Among them,N24P12 treatment showed the greatest increase in the soil nutrient content and respiration.N12P12 treatment increased the overall enzyme activity and total phospholipid fatty acid(PLFA)content by 70.93%.N and P nutrient contents of the soil dominate the microbial community structure and the corresponding changes in hydrolytic enzymes.Soil microbial biomass,respiration,and overall enzyme activity are driven by mineralized N.Our study provides a theoretical basis for exploring energy conversion processes of soil microbial community and environmental sustainability under long-term N and P additions in semi-arid loess areas. 展开更多
关键词 nitrogen and phosphorus additions microbial community structure farmland ecosystem nitrogen mineralization soil enzyme activity
下载PDF
Effects of Zinc on the Yield,Uptake and Distribution of Nitrogen/Phosphorus/Potassium/Zinc in Different Genotypes of Maize 被引量:8
12
作者 李佐同 杨克军 王玉凤 《Agricultural Science & Technology》 CAS 2010年第3期72-75,86,共5页
[Objective] To study the effects of Zinc on the yield,nitrogen/phosphorus/potassium/Zinc uptake and distribution of different genotypes of maize.[Method] Using two different genotypes of maize as materials,the effects... [Objective] To study the effects of Zinc on the yield,nitrogen/phosphorus/potassium/Zinc uptake and distribution of different genotypes of maize.[Method] Using two different genotypes of maize as materials,the effects of Zn on the yield,N/P/K /Zn uptake and distribution of different genotypes of maize were studied by pot cultivation.[Result] Appropriate Zn supply could improve the grain number per kernel.The Zn content in different organs of maize showed little difference under low Zn treatment (Zn0,Zn1).With the increase of Zn supply,Zn content in leaf,stem and sheath rapidly increased,but the increasing amplitude of Zn content in the kernel and bract were less.The excessive Zn in maize was mainly translocated in lower organs to reduce the damage of them to plants.Different Zn supply levels had less effects on the absorption and translocation of N,P and K in low-Zn insensitive variety Mudan 9.While the absorption and translation of N,P,K in low Zn sensitive variety (Sidan 19) was more easily influenced by the amount of Zn supplied.[Conclusion] Appropriate Zn supply could enhance the maize yield and utilization rate of N and K,and reduce the absorption and utilization of P. 展开更多
关键词 Zn MAIZE Genotype YIELD nitrogen phosphorus potassium
下载PDF
Effect Models of Nitrogen,Phosphorus and Potassium Fertilizer Formulation in Banana 被引量:1
13
作者 匡石滋 田世尧 +3 位作者 李春雨 易干军 洪炎龙 万国富 《Agricultural Science & Technology》 CAS 2010年第9期130-135,共6页
[Objective] The aim was to modify the application amount of N,P and K fertilizer so as to provide a reference for establishing balanced fertilization index system of banana.[Method]The N,P and K fertilizer "3414" te... [Objective] The aim was to modify the application amount of N,P and K fertilizer so as to provide a reference for establishing balanced fertilization index system of banana.[Method]The N,P and K fertilizer "3414" test was carried out on banana,and then regression analysis was performed on the fertilizer effect.Ternary quadratic,binary quadric and one-variable quadratic regression equations for the fertilizer effect on the banana yield were constructed.[Result]Suitable amount of N,P and K fertilizer had significant yield improving effect,whereas overdose of fertilizer application led to decreasing of utilization rate of fertilizer.Therefore,suitable amount of N,P and K fertilizer should be selected in production.It could be concluded that one-variable quadratic regression equations was the best model to calculate the suitable fertilizer amount.The best yield range of banana in the tested field was 44.193-45.904 t/hm2,while the corresponding optimum application amount of N,P2O5 and K2O was 795.1,262.3 and 1 236.9 kg/hm2 respectively,and the ratio among nitrogen,phosphorus and potassium are 1∶0.33∶1.55.[Conclusion]The result in this study could provide references for the soil types similar to the tested field. 展开更多
关键词 BANANA nitrogen phosphorus and potassium fertilization Fertilizer application model Optimum application amount
下载PDF
Study on Absorption Law of Nitrogen,Phosphorus and Potassium and Proper Nitrogen Application in Chuanxiangyou 9838 under No-tillage Cultivation
14
作者 孙锡发 涂仕华 +3 位作者 秦鱼生 冯文强 廖鸣兰 周先龙 《Agricultural Science & Technology》 CAS 2008年第2期143-146,151,共5页
The aim of the study is to investigate the absorption laws of nitrogen, phosphorus, and potassium, and proper nitrogen application in Chuanxiangyou 9838 under no-tillage cultivation. Five nitrogen application treatmen... The aim of the study is to investigate the absorption laws of nitrogen, phosphorus, and potassium, and proper nitrogen application in Chuanxiangyou 9838 under no-tillage cultivation. Five nitrogen application treatments were designed to analyze the absorption laws of N, P and K, and to discuss the effects of different N fertilizer application amounts on yield and yield composition factors of Chuanxiangyou 9838. The results showed that gross nutrient absorption in Chuanxiangyou 9838 was greatly varied at different developmental stages under rice-rape rotation with no-tillage. The maximum N absorption in Chuanxiangyou 9838 appeared at jointing stage followed by heading stage, thirdly the tillefing stage ; the P absorption in Chuanxiangyou 9838 presented the consecutively slight increase during seedling stage and mature stage ; the K absorption in Chuanxiangyou 9838 was mainly conducted from jointing stage to heading stage, during which K absorption accounts for 73.4% of the total absorption in whole developmental stage. Consequently, N fertilizer should be applied earlier ( before jointing stage), P fertilizer is suitable as base fertilizer and application of K fertilizer should be preferably conducted at early-middle period. When the yield reached 11 t/hm^2, the optimal N application amount in Chuanxiangyou 9838 was about 165 kg/hm^2. 展开更多
关键词 Chuanxiangyou 9838 nitrogen phosphorus potassium Application amount
下载PDF
Drip fertigation and plant hedgerows significantly reduce nitrogen and phosphorus losses and maintain high fruit yields in intensive orchards 被引量:3
15
作者 SONG Ke QIN Qin +5 位作者 YANG Ye-feng SUN Li-juan SUN Ya-fei ZHENG Xian-qing Lü Wei-guang XUE Yong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第2期598-610,共13页
A field experiment was carried out to evaluate the effects of drip fertigation combined with plant hedgerows on nitrogen and phosphorus runoff losses in intensive pear orchards in the Tai Lake Basin.Nitrogen and phosp... A field experiment was carried out to evaluate the effects of drip fertigation combined with plant hedgerows on nitrogen and phosphorus runoff losses in intensive pear orchards in the Tai Lake Basin.Nitrogen and phosphorus runoff over a whole year were measured by using successional runoff water collection devices.The four experimental treatments were conventional fertilization(CK),drip fertigation(DF),conventional fertilization combined with plant hedgerows(C+H),and drip fertigation combined with plant hedgerows(D+H).The results from one year of continuous monitoring showed a significant positive correlation between precipitation and surface runoff discharge.Surface runoff discharge under the treatments without plant hedgerows totaled 15.86%of precipitation,while surface runoff discharge under the treatments with plant hedgerows totaled 12.82%of precipitation.Plant hedgerows reduced the number of runoff events and the amount of surface runoff.Precipitation is the main driving force for the loss of nitrogen and phosphorus in surface runoff,and fertilization is an important factor affecting the losses of nitrogen and phosphorus.In CK,approximately 7.36%of nitrogen and 2.63%of phosphorus from fertilization entered the surface water through runoff.Drip fertigation reduced the accumulation of nitrogen and phosphorus in the surface soil and lowered the runoff loss concentrations of total nitrogen(TN)and total phosphorus(TP).Drip fertigation combined with plant hedgerows significantly reduced the overall TN and TP losses by 45.38 and 36.81%,respectively,in comparison to the CK totals.Drip fertigation increased the vertical migration depth of nitrogen and phosphorus nutrients and reduced the accumulation of nitrogen and phosphorus in the surface soil,which increased the pear yield.The promotion of drip fertigation combined with plant hedgerows will greatly reduce the losses of nitrogen and phosphorus to runoff and maintain the high fruit yields in the intensive orchards of the Tai Lake Basin. 展开更多
关键词 drip fertigation plant hedgerows surface runoff nitrogen and phosphorus losses fruit yields
下载PDF
Nitrogen, phosphorus and potassium recycling in an agroforestry ecosystem of Huanghuaihai Plain: with Paulownia elongata intercropped wheat and maize as an example 被引量:3
16
作者 Wu Gang Department of Systems Ecology,Research Center for Eco Environmental Sciences, Chinese Academy of Sciences,Beijing 100085,China 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1998年第2期62-69,共8页
The studies show that in the whole community, P is deficient, and N and K are basically balanced. N, P and K are accumulated in plant tissues and litters, but depleted in soil. N and P contents in surface soil(0—20 ... The studies show that in the whole community, P is deficient, and N and K are basically balanced. N, P and K are accumulated in plant tissues and litters, but depleted in soil. N and P contents in surface soil(0—20 cm) are the main factors affecting crop growth, and P contents in 20 80 cm soil layer is the major affecting Paulownia elongata growth. The absorption coefficients of N, P and K in the communities are 0 078, 0 014 and 0 052 respectively, their utilization coefficients are 0 95, 0 90 and 0 94, and the recycling coefficients are 0 042, 0 05 and 0 063 respectively. 展开更多
关键词 nitrogen phosphorus potassium RECYCLING agroforestry ecosystem.
下载PDF
Effects of Nitrogen-phosphorus-potassium Combined Fertilization on Rice Yield and Fertilizer Use Efficiency in Jianghan Plain 被引量:1
17
作者 Xiangping WANG Wei ZHOU +1 位作者 Pubing ZHENG Guilan HUANG 《Agricultural Biotechnology》 CAS 2022年第2期85-90,共6页
[Objectives]This study was conducted to explore the rational formula for rice fertilization in Jianghan Plain.[Methods]An experiment on the combined application of nitrogen,phosphorus and potassium fertilizers was car... [Objectives]This study was conducted to explore the rational formula for rice fertilization in Jianghan Plain.[Methods]An experiment on the combined application of nitrogen,phosphorus and potassium fertilizers was carried out in Jianghan Plain,an important rice producing area in Hubei,with a total of five treatments to study the effects of nitrogen,phosphorus and potassium fertilizers on the fertilizer use efficiency and yield of rice.[Results]Fertilization had a significant effect on improving rice yield,and nitrogen fertilizer had the greatest effect on rice yield,followed by potassium fertilizer and phosphorous fertilizer.[Conclusions]This study provides a scientific basis for the application of rice fertilizers and the reduction and efficiency improvement of chemical fertilizers in Jianghan Plain. 展开更多
关键词 RICE nitrogen phosphorus potassium fertilizers Fertilizer use efficiency YIELD
下载PDF
Characteristics of Nitrogen and Phosphorus Losses in Different Crop Rotation Systems in the North of Erhai Lake Basin 被引量:8
18
作者 汤秋香 任天志 +5 位作者 雷宝坤 翟丽梅 胡万里 张继宗 林涛 刘宏斌 《Agricultural Science & Technology》 CAS 2012年第10期2206-2212,共7页
[Objective] Nitrogen and phosphorus losses of surface runoff in various crop rotation systems in the north of Erhai Lake basin were studied with the objective to provide references for risk evaluation of environmental... [Objective] Nitrogen and phosphorus losses of surface runoff in various crop rotation systems in the north of Erhai Lake basin were studied with the objective to provide references for risk evaluation of environmental pollution and formulating countermeasures to control the nonpoint source pollution from agriculture.[Method] Water samples collected in four typical crop rotation systems distributed in seven towns(townships) in the north of Erhai Lake basin were investigated,as well as the fertilizer input,to explore the dynamic change of nitrogen and phosphorus content in surface water of farmland and ditch water,and the correlation between fertilizer input and the concentrations of nitrogen and phosphorus in the surface water of farmland and in the ditch water.[Result] The results showed that nitrogen loss in surface water of farmland in different crop rotation systems differed greatly,and the risk of nitrogen loss was 38% lower in broad bean-rice crop rotation than that in garlic-rice crop rotation.The water soluble nitrogen was the primary form of nitrogen loss.The content of water soluble nitrogen was significantly higher in garlic-rice crop rotation than that in the other rotation systems,and the concentrations of nitrogen in the surface water of farmland in different crop rotation systems followed the sequence below:garlic-rice crop rotationryegrass-rice crop rotationbroad bean-rice crop rotationrape-rice crop rotation.The loss of phosphorus in the surface water of farmland was relatively low and phosphorus combined with silt was the primary form for phosphorus loss.There was no significant difference of the loss of various forms of phosphorus in different crop rotation systems.The contents of total nitrogen and total phosphorus in the surface water of farmland were higher than that in ditch water,with increasing rates of total nitrogen and total phosphorus in ditch water of 72% and 82%,respectively.Topdressing was the critical reason for the high concentrations of nitrogen and phosphorus in the surface water,which also caused the increasing load to the ditch water.[Conclusion] Both the nitrogen and phosphorus loss were the highest in garlic-rice crop rotation.Reasonable crop rotation systems should be established based on both the environmental and economic benefits.This study provided references for controlling the nonpoint source pollution of farmland and improving the water quality of Erhai Lake. 展开更多
关键词 The northe areas of Erhai Lake basin FARMLand Crop rotation nitrogen and phosphorus losses
下载PDF
Effects of Controlled Release Fertilizer on Loss of Nitrogen and Phosphorus from Farmland 被引量:6
19
作者 李堃 司马小峰 +1 位作者 丁仕奇 陈卓 《Agricultural Science & Technology》 CAS 2012年第8期1727-1732,共6页
[Objective] The aim was to study on effects of controlled release fertilizer on loss of nitrogen and phosphorus from farmland. [Method] Experiment was conducted in fields planted with rice and corn around Chao Lake an... [Objective] The aim was to study on effects of controlled release fertilizer on loss of nitrogen and phosphorus from farmland. [Method] Experiment was conducted in fields planted with rice and corn around Chao Lake and effects of compound fertilizer, controlled release fertilizer and controlled release fertilizer (reduced by 20%) on loss of nitrogen and phosphorus through runoff and leaching were analyzed. [Result] Loss of nitrogen and phosphorus mainly occurred in early stage of fertilizing; loss caused by runoff accounted for over 98% and caused by leaching was lower than 2%, indicating that nutrients of rice and corn mainly lost through runoff. As for controlled release fertilizers with 20% reduced, total loss of N and P decreased by 60% and 63% in rice field and reduced by 27.8% and 34% in corn field, respectively, indicating that controlled release fertilizer would maintain nutrients in soils high in later period of plant growth, improve use efficiency of N and P, reduce N and P loss in rice and corn fields in rainy season, and decrease non-point pollution. [Conclusion] The research suggested that controlled release fertilizer would slow down the loss of nutrients in farmlands, providing scientific references and technological support for extension of controlled release fertilizer and reduction of agricultural non-point pollution. 展开更多
关键词 Controlled release fertilizer RICE CORN Loss of nitrogen and phosphorus Chao Lake RUNOFF LEACHING
下载PDF
Nitrogen and phosphorus changes and optimal drainage time of flooded paddy field based on environmental factors 被引量:4
20
作者 Meng-hua XIAO Shuang-en YU +1 位作者 Yan-yan WANG Rong HUANG 《Water Science and Engineering》 EI CAS CSCD 2013年第2期164-177,共14页
While many controlled irrigation and drainage techniques have been adopted in China, the environmental effects of these techniques require further investigation. This study was conducted to examine the changes of nitr... While many controlled irrigation and drainage techniques have been adopted in China, the environmental effects of these techniques require further investigation. This study was conducted to examine the changes of nitrogen and phosphorus of a flooded paddy water system after fertilizer application and at each growth stage so as to obtain the optimal drainage time at each growth stage. Four treatments with different water level management methods at each growth stage were conducted under the condition of ten-day continuous flooding. Results show that the ammonia nitrogen ( NH4-N ) concentration reached the peak value once the fertilizer was applied, and then decreased to a relatively low level seven to ten days later, and that the nitrate nitrogen (NO^-N) concentration gradually rose to its peak value, which appeared later in subsurface water than in surface water. Continuous flooding could effectively reduce the concentrations of NH^-N , NO3-N, and total phosphorus (TP) in surface water. However, the paddy water disturbance, in the process of soil surface adsorption and nitrification, caused NH]-N to be released and increased the concentrations of NH4-N and NO^-N in surface water. A multi-objective controlled drainage model based on environmental factors was established in order to obtain the optimal drainage time at each growth stage and better guide the drainage practices of farmers. The optimal times for surface drainage are the fourth, sixth, fifth, and sixth days after flooding at the tillering, jointing-booting, heading-flowering, and milking stages, respectively. 展开更多
关键词 ammonia nitrogen nitrate nitrogen phosphorus optimal drainage time flooded paddy field
下载PDF
上一页 1 2 107 下一页 到第
使用帮助 返回顶部