Effects of algae Nitzschia hantzschiana, Fe(Ⅲ) ions, humic acid, and pH on the photochemical reduction of Hg(Ⅱ) using the irradiation of metal halide lamps (λ〉 365 nm, 250 W) were investigated. The photoredu...Effects of algae Nitzschia hantzschiana, Fe(Ⅲ) ions, humic acid, and pH on the photochemical reduction of Hg(Ⅱ) using the irradiation of metal halide lamps (λ〉 365 nm, 250 W) were investigated. The photoreduction rate of Hg(Ⅱ) was found to increase with increasing concentrations of algae, Fe(Ⅲ) ions, and humic acid. Alteration of pH value affected the photoreduction of Hg(Ⅱ) in aqueous solution with or without algae. The photoreduction rate of Hg(Ⅱ) decreased with increasing initial Hg(Ⅱ) concentration in aqueous solution in the presence of algae. The photochemical kinetics of initial Hg(Ⅱ) and algae concentrations on the photoreduction of Hg(Ⅱ) were studied at pH 7.0. The study on the total Hg mass balance in terms of photochemical process revealed that more than 42% of Hg(Ⅱ) from the algal suspension was reduced to volatile metallic Hg under the conditions investigated.展开更多
The photodegradation of 17α-ethynylestradiol (EE2) induced by highpressure mercury lamp (λ≥313 nm, 250 W) in aqueous solution with algae (e. g.Nitzschia hantzschiana andChlorella vulgaris) and Fe3+ was ineestigated...The photodegradation of 17α-ethynylestradiol (EE2) induced by highpressure mercury lamp (λ≥313 nm, 250 W) in aqueous solution with algae (e. g.Nitzschia hantzschiana andChlorella vulgaris) and Fe3+ was ineestigated initially. The affecting factors on the photodegradation were studied and described in details, such as algae concentration, Fe3+, exposure time, and so on. The concentration of EE2 in distilled water was determined using fluorescence spectrophotometer. The photodegradation of EE2 in aqueous solution exposed to 250 W high-pressure mercury lamp was evident in the presence of algae and Fe3+. With the algae concentration increasing, photodegradation rate increased. Fe3+ could accelerate the photocatalytic degradation of EE2 in aqueous solution with algae. The colloidal ferric hydroxide particles that might have absorbed on the algae cells could enhance the photocatalytic degradation of EE2 by algae. The catalysis in photocatalytic degradation reaction mainly resulted from the active oxygen (H2O2,1O2 and ·OH) that was caused by algae and Fe3+ under 250 W HPML. In this paper, the mechanism of photocatalytic degradation of EE2 by algae and Fe3+ is discussed theoretically in details. Key words 17α-ethynylestradiol - photodegradation - high-pressure mercury lamp - Nitzschia hantzschiana - Chlorella vulgaris - Fe3+ CLC number X 131. 2 Foundation item: Supported by the Scientific Research Foundation of Wuhan Environmental Protection Bureau and the National Natural Science Foundation of China (20177017)Biography: Liu Xian-li (1965-), male, Ph. D candidate, Associate professor, research direction: environmental chemistry展开更多
Studies on the adsorption of Pd 2+ ion by Nitzschia hantzschiana Rabh., a diatom were carried out. Uniform design was used to arrange the experiment. The growth period of diatom, adsorption time, concentration of Pd 2...Studies on the adsorption of Pd 2+ ion by Nitzschia hantzschiana Rabh., a diatom were carried out. Uniform design was used to arrange the experiment. The growth period of diatom, adsorption time, concentration of Pd 2+ and pH were found to have positive effects on the adsorption amount of Pd 2+ on diatom. The optimum conditions are: the growth period of diatom 12 days, adsorption time=6 h, \=0.01 g/L and \ =0.16 mol/L. EPMA analysis showed that the diameter of the reduced adsorbed Pd was about 1 μm. A mathematical model was found to describe experimental data, that the adsorption fits to Freundlich equation, Q=70.2\ 0.76. The adsorption amount of Pd 2+ on diatom increased logarithmically with the increase of Pd 2+ concentration.展开更多
基金supported by the National Natural Science Foundation of China (No.20477031)the National Natural Science Foundation of China (NSFC)the Russian Foundation for Basic Research (RFBR)Cooperation Project (2004-2005)
文摘Effects of algae Nitzschia hantzschiana, Fe(Ⅲ) ions, humic acid, and pH on the photochemical reduction of Hg(Ⅱ) using the irradiation of metal halide lamps (λ〉 365 nm, 250 W) were investigated. The photoreduction rate of Hg(Ⅱ) was found to increase with increasing concentrations of algae, Fe(Ⅲ) ions, and humic acid. Alteration of pH value affected the photoreduction of Hg(Ⅱ) in aqueous solution with or without algae. The photoreduction rate of Hg(Ⅱ) decreased with increasing initial Hg(Ⅱ) concentration in aqueous solution in the presence of algae. The photochemical kinetics of initial Hg(Ⅱ) and algae concentrations on the photoreduction of Hg(Ⅱ) were studied at pH 7.0. The study on the total Hg mass balance in terms of photochemical process revealed that more than 42% of Hg(Ⅱ) from the algal suspension was reduced to volatile metallic Hg under the conditions investigated.
文摘The photodegradation of 17α-ethynylestradiol (EE2) induced by highpressure mercury lamp (λ≥313 nm, 250 W) in aqueous solution with algae (e. g.Nitzschia hantzschiana andChlorella vulgaris) and Fe3+ was ineestigated initially. The affecting factors on the photodegradation were studied and described in details, such as algae concentration, Fe3+, exposure time, and so on. The concentration of EE2 in distilled water was determined using fluorescence spectrophotometer. The photodegradation of EE2 in aqueous solution exposed to 250 W high-pressure mercury lamp was evident in the presence of algae and Fe3+. With the algae concentration increasing, photodegradation rate increased. Fe3+ could accelerate the photocatalytic degradation of EE2 in aqueous solution with algae. The colloidal ferric hydroxide particles that might have absorbed on the algae cells could enhance the photocatalytic degradation of EE2 by algae. The catalysis in photocatalytic degradation reaction mainly resulted from the active oxygen (H2O2,1O2 and ·OH) that was caused by algae and Fe3+ under 250 W HPML. In this paper, the mechanism of photocatalytic degradation of EE2 by algae and Fe3+ is discussed theoretically in details. Key words 17α-ethynylestradiol - photodegradation - high-pressure mercury lamp - Nitzschia hantzschiana - Chlorella vulgaris - Fe3+ CLC number X 131. 2 Foundation item: Supported by the Scientific Research Foundation of Wuhan Environmental Protection Bureau and the National Natural Science Foundation of China (20177017)Biography: Liu Xian-li (1965-), male, Ph. D candidate, Associate professor, research direction: environmental chemistry
文摘Studies on the adsorption of Pd 2+ ion by Nitzschia hantzschiana Rabh., a diatom were carried out. Uniform design was used to arrange the experiment. The growth period of diatom, adsorption time, concentration of Pd 2+ and pH were found to have positive effects on the adsorption amount of Pd 2+ on diatom. The optimum conditions are: the growth period of diatom 12 days, adsorption time=6 h, \=0.01 g/L and \ =0.16 mol/L. EPMA analysis showed that the diameter of the reduced adsorbed Pd was about 1 μm. A mathematical model was found to describe experimental data, that the adsorption fits to Freundlich equation, Q=70.2\ 0.76. The adsorption amount of Pd 2+ on diatom increased logarithmically with the increase of Pd 2+ concentration.