Objective: To investigate the electrophysiology effects and mechanism of iron overload on the slow response autorhythmic cells in the left ventricular outflow tract of guinea pigs.Methods: Standard microelectrode cell...Objective: To investigate the electrophysiology effects and mechanism of iron overload on the slow response autorhythmic cells in the left ventricular outflow tract of guinea pigs.Methods: Standard microelectrode cell recording techniques were adopted to observe the electrophysiological effects of different concentrations of Fe^(2+)(100 μmol/L, 200 μmol/L) on the left ventricular outflow tract autorhythmic cells.Heart tissues were perfused with FeSO_4(200 μmol/L) combing with CaCl_2(4.2 mmol/L), Verapamil,(1 μmol/L), and nickel chloride(200μmol/L) respectively to observe the influences of these contents on electrophysiology of FeSO_4(200μmol/L) on the left ventricular outflow tract autorhythmic cells.Results: Fe^(2+)at both 100 μmol/L and 200 μmol/L could change the electrophysiological parameters of the slow response autorhythmic cells of the left ventricular outflow tract in a concentrationdependent manner resulting into decrease in Vmax, APA and MDP, slower RPF and VDD, and prolonged APD_(50) and APD_(90)(P all <0.05).Besides, perfusion of increased Ca^(2+) concentration could partially offset the electrophysiological effects of Fe^(2+)(200 μmol/L).The L-type calcium channel(LTCC) blocker Verapamil(1 μmol/L) could block the electrophysiological effects of Fe^(2+)(200 μmol/L).But the T-type calcium channel(TTCC) blocker nickel chloride(NiCl_2, 200 μmol/L) could not block the electrophysiological effects of Fe^(2+)(200 μmol/L).Conclusions: Fe^(2+) can directly change the electrophysiological characteristics of the slow response autorhythmic cells of the left ventricular outflow tract probably through the L-type calcium channel.展开更多
The asymptotic behavior of solutions of a similarity equation for the laminar flow in a porous channel with suction at both expanding and contracting walls has been obtained by using a singular perturbation method.How...The asymptotic behavior of solutions of a similarity equation for the laminar flow in a porous channel with suction at both expanding and contracting walls has been obtained by using a singular perturbation method.However,in the matching process,this solution neglects exponentially small terms.To take into account these exponentially small terms,a method involving the inclusion of exponentially small terms in a perturbation series was used to find two of the solutions analytically.The series involving the exponentially small terms and expansion ratio predicts dual solutions.Furthermore,the result indicates that the expansion ratio has much important influence on the solutions.展开更多
Slow coronary flow phenomenon(SCFP) is an angiographic observation characterized by delayed distal vessel opacifi-cation in the absence of significant epicardial coronary disease. Only limited studies have been focuse...Slow coronary flow phenomenon(SCFP) is an angiographic observation characterized by delayed distal vessel opacifi-cation in the absence of significant epicardial coronary disease. Only limited studies have been focused on the etiologies,clinical manifestations and treatment of this unique angiographic phenomenon. In our case report,we described an 85-year-old man who came with significant ST segment elevation in leads V1-V4 and V3R-V5R without increase in myocardial enzyme. The patient also developed respiratory failure requiring intubation and mechanical ventilation. Coronary angiography revealed only mild atherosclerosis without spasm or thromboembolic occlusion. Slow flow was seen in all coronary arteries,especially in the left anterior descending and right coronary arteries. This case speculated that transmural myocardial ischemia with ST segment elevation might be resulted from slow coronary flow. Transmural myocardial ischemia can occur owing to abnormalities of the coronary microcirculation.展开更多
Urban water supply network is a modern urban survival and development of the infrastructure of a city,and its normal running conditions have important significance. The actual hydraulic process in the variableload wat...Urban water supply network is a modern urban survival and development of the infrastructure of a city,and its normal running conditions have important significance. The actual hydraulic process in the variableload water distribution networks can be treated as the slow transient flow which belongs to the unsteady flow. This paper analyzes the multi-loops network slow transient model based on graph theory,and the link flow matrix is treated as the variables of the discrete solution model to simulate the process of the slow transient flow in the network. With the simulation of hydraulic regime in an actual pipe network,the changing laws of the flow in the pipes,nodal hydraulic heads and other hydraulic factors with the passage of time are obtained. Since the transient processes offer much more information than a steady process,the slow transient theory is not only practical on analyzing the hydraulic condition of the network,but also on identifying hydraulic resistance coefficients of pipes and detecting the leakage in networks.展开更多
On the basis of hypothesis of replacement and the vector formula of Newton’s law for a viscous fluid the way of a finding of resistance a slow flow by an incompressible fluid of bodies of the various form is represen...On the basis of hypothesis of replacement and the vector formula of Newton’s law for a viscous fluid the way of a finding of resistance a slow flow by an incompressible fluid of bodies of the various form is represented. Application of an offered way to calculation of a flow of various bodies is shown: a sphere, a cylinder, a oblong ellipsoid, a flat plate. Comparison with results of other authors is given.展开更多
Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extra synaptic N-met hyl-D-aspartate receptors with the contribution of astrocytes.These events a...Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extra synaptic N-met hyl-D-aspartate receptors with the contribution of astrocytes.These events are significantly slower than the excitatory postsynaptic currents.Parameters of slow inward currents are determined by seve ral factors including the mechanisms of astrocytic activation and glutamate release,as well as the diffusion pathways from the release site towards the extra synaptic recepto rs.Astrocytes are stimulated by neuronal network activity,which in turn excite neurons,forming an astrocyte-neuron feedback loop.Mostly as a consequence of brain edema,astrocytic swelling can also induce slow inward currents under pathological conditions.There is a growing body of evidence on the roles of slow inward currents on a single neuron or local network level.These events often occur in synchro ny on neurons located in the same astrocytic domain.Besides synchronization of neuronal excitability,slow inward currents also set synaptic strength via eliciting timing-dependent synaptic plasticity.In addition,slow inward currents are also subject to non-synaptic plasticity triggered by long-la sting stimulation of the excitatory inputs.Of note,there might be important regionspecific differences in the roles and actions triggering slow inward currents.In greater networks,the pathophysiological roles of slow inward currents can be better understood than physiological ones.Slow inward currents are identified in the pathophysiological background of autism,as slow inward currents drive early hypersynchrony of the neural networks.Slow inward currents are significant contributors to paroxysmal depolarizational shifts/interictal spikes.These events are related to epilepsy,but also found in Alzheimer's disease,Parkinson's disease,and stroke,leading to the decline of cognitive functions.Events with features overlapping with slow inward currents(excitatory,N-methyl-Daspartate-receptor mediated currents with astrocytic contribution) as ischemic currents and spreading depolarization also have a well-known pathophysiological role in worsening consequences of stroke,traumatic brain injury,or epilepsy.One might assume that slow inward currents occurring with low frequency under physiological conditions might contribute to synaptic plasticity and memory formation.However,to state this,more experimental evidence from greater neuronal networks or the level of the individual is needed.In this review,I aimed to summarize findings on slow inward currents and to speculate on the potential functions of it.展开更多
Drought is one of the abiotic stresses limiting the production of soybean(Glycine max).Elucidation of the genetic and molecular basis of the slow-wilting(SW)trait of this crop offers the prospect of its genetic improv...Drought is one of the abiotic stresses limiting the production of soybean(Glycine max).Elucidation of the genetic and molecular basis of the slow-wilting(SW)trait of this crop offers the prospect of its genetic improvement.A panel of 188 accessions and a set of recombinant inbred lines produced from a cross between cultivars Liaodou 14 and Liaodou 21 were used to identify quantitative-trait loci(QTL)associated with SW.Plants were genotyped by Specific-locus amplified fragment sequencing and seedling leaf wilting was assessed under three water-stress treatments.A genome-wide association study identified 26 SW-associated single-nucleotide polymorphisms(SNPs),including three located in a 248-kb linkage-disequilibrium(LD)block on chromosome 2.Linkage mapping revealed a major-effect QTL,qSW2,associated with all three treatments and adjacent to the LD block.Fine mapping in a BC_(2)F_(3) population derived from a backcross between Liaodou 21 and R26 confined qSW2 to a 60-kb interval.Gene expression and sequence variation analysis identified the gene Glyma.02 g218100,encoding an auxin transcription factor,as a candidate gene for qSW2.Our results will contribute significantly to improving drought-resistant soybean cultivars by providing genetic information and resources.展开更多
Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat ...Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat exchanger structure and hydrogen liquefaction process(LH2). The methods of cryogenic visualization experiment, theoretical analysis and numerical simulation are conducted to study the falling film flow characteristics with the effect of co-current gas flow in LH2spiral wound heat exchanger.The results show that the flow rate of mixed refrigerant has a great influence on liquid film spreading process, falling film flow pattern and heat transfer performance. The liquid film of LH2mixed refrigerant with column flow pattern can not uniformly and completely cover the tube wall surface. As liquid flow rate increases, the falling film flow pattern evolves into sheet-column flow and sheet flow, and liquid film completely covers the surface of tube wall. With the increase of shear effect of gas-phase mixed refrigerant in the same direction, the liquid film gradually becomes unstable, and the flow pattern eventually evolves into a mist flow.展开更多
The stability of inviscid incompressible swirling flow with slowly divergence is investigated A multiple scale expansion is used to develop a linear stability study of slowly divergent swirling flow with non-axisymmet...The stability of inviscid incompressible swirling flow with slowly divergence is investigated A multiple scale expansion is used to develop a linear stability study of slowly divergent swirling flow with non-axisymmetric disturbances The differental equations of zero-order and first-order disturbance module and governing equation of amplitude variation due to slowly divergent flow are derved The plaschko s equation for slowly divergent swirl-free jet has been extended to slowly divergent flow with swirlin the present study.展开更多
基金supported by Zhangjiakou Project of Science and Technology Studies and Development Planning(Grand No.1321078D)
文摘Objective: To investigate the electrophysiology effects and mechanism of iron overload on the slow response autorhythmic cells in the left ventricular outflow tract of guinea pigs.Methods: Standard microelectrode cell recording techniques were adopted to observe the electrophysiological effects of different concentrations of Fe^(2+)(100 μmol/L, 200 μmol/L) on the left ventricular outflow tract autorhythmic cells.Heart tissues were perfused with FeSO_4(200 μmol/L) combing with CaCl_2(4.2 mmol/L), Verapamil,(1 μmol/L), and nickel chloride(200μmol/L) respectively to observe the influences of these contents on electrophysiology of FeSO_4(200μmol/L) on the left ventricular outflow tract autorhythmic cells.Results: Fe^(2+)at both 100 μmol/L and 200 μmol/L could change the electrophysiological parameters of the slow response autorhythmic cells of the left ventricular outflow tract in a concentrationdependent manner resulting into decrease in Vmax, APA and MDP, slower RPF and VDD, and prolonged APD_(50) and APD_(90)(P all <0.05).Besides, perfusion of increased Ca^(2+) concentration could partially offset the electrophysiological effects of Fe^(2+)(200 μmol/L).The L-type calcium channel(LTCC) blocker Verapamil(1 μmol/L) could block the electrophysiological effects of Fe^(2+)(200 μmol/L).But the T-type calcium channel(TTCC) blocker nickel chloride(NiCl_2, 200 μmol/L) could not block the electrophysiological effects of Fe^(2+)(200 μmol/L).Conclusions: Fe^(2+) can directly change the electrophysiological characteristics of the slow response autorhythmic cells of the left ventricular outflow tract probably through the L-type calcium channel.
文摘The asymptotic behavior of solutions of a similarity equation for the laminar flow in a porous channel with suction at both expanding and contracting walls has been obtained by using a singular perturbation method.However,in the matching process,this solution neglects exponentially small terms.To take into account these exponentially small terms,a method involving the inclusion of exponentially small terms in a perturbation series was used to find two of the solutions analytically.The series involving the exponentially small terms and expansion ratio predicts dual solutions.Furthermore,the result indicates that the expansion ratio has much important influence on the solutions.
文摘Slow coronary flow phenomenon(SCFP) is an angiographic observation characterized by delayed distal vessel opacifi-cation in the absence of significant epicardial coronary disease. Only limited studies have been focused on the etiologies,clinical manifestations and treatment of this unique angiographic phenomenon. In our case report,we described an 85-year-old man who came with significant ST segment elevation in leads V1-V4 and V3R-V5R without increase in myocardial enzyme. The patient also developed respiratory failure requiring intubation and mechanical ventilation. Coronary angiography revealed only mild atherosclerosis without spasm or thromboembolic occlusion. Slow flow was seen in all coronary arteries,especially in the left anterior descending and right coronary arteries. This case speculated that transmural myocardial ischemia with ST segment elevation might be resulted from slow coronary flow. Transmural myocardial ischemia can occur owing to abnormalities of the coronary microcirculation.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50908064 and 51208158)the 46thChina Postdoctoral Science Foundation(Grant No.20090460912)
文摘Urban water supply network is a modern urban survival and development of the infrastructure of a city,and its normal running conditions have important significance. The actual hydraulic process in the variableload water distribution networks can be treated as the slow transient flow which belongs to the unsteady flow. This paper analyzes the multi-loops network slow transient model based on graph theory,and the link flow matrix is treated as the variables of the discrete solution model to simulate the process of the slow transient flow in the network. With the simulation of hydraulic regime in an actual pipe network,the changing laws of the flow in the pipes,nodal hydraulic heads and other hydraulic factors with the passage of time are obtained. Since the transient processes offer much more information than a steady process,the slow transient theory is not only practical on analyzing the hydraulic condition of the network,but also on identifying hydraulic resistance coefficients of pipes and detecting the leakage in networks.
文摘On the basis of hypothesis of replacement and the vector formula of Newton’s law for a viscous fluid the way of a finding of resistance a slow flow by an incompressible fluid of bodies of the various form is represented. Application of an offered way to calculation of a flow of various bodies is shown: a sphere, a cylinder, a oblong ellipsoid, a flat plate. Comparison with results of other authors is given.
基金funded by the National Research Developm ent and Innovation Office (NKFIH-K1468 73) (to BP)。
文摘Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extra synaptic N-met hyl-D-aspartate receptors with the contribution of astrocytes.These events are significantly slower than the excitatory postsynaptic currents.Parameters of slow inward currents are determined by seve ral factors including the mechanisms of astrocytic activation and glutamate release,as well as the diffusion pathways from the release site towards the extra synaptic recepto rs.Astrocytes are stimulated by neuronal network activity,which in turn excite neurons,forming an astrocyte-neuron feedback loop.Mostly as a consequence of brain edema,astrocytic swelling can also induce slow inward currents under pathological conditions.There is a growing body of evidence on the roles of slow inward currents on a single neuron or local network level.These events often occur in synchro ny on neurons located in the same astrocytic domain.Besides synchronization of neuronal excitability,slow inward currents also set synaptic strength via eliciting timing-dependent synaptic plasticity.In addition,slow inward currents are also subject to non-synaptic plasticity triggered by long-la sting stimulation of the excitatory inputs.Of note,there might be important regionspecific differences in the roles and actions triggering slow inward currents.In greater networks,the pathophysiological roles of slow inward currents can be better understood than physiological ones.Slow inward currents are identified in the pathophysiological background of autism,as slow inward currents drive early hypersynchrony of the neural networks.Slow inward currents are significant contributors to paroxysmal depolarizational shifts/interictal spikes.These events are related to epilepsy,but also found in Alzheimer's disease,Parkinson's disease,and stroke,leading to the decline of cognitive functions.Events with features overlapping with slow inward currents(excitatory,N-methyl-Daspartate-receptor mediated currents with astrocytic contribution) as ischemic currents and spreading depolarization also have a well-known pathophysiological role in worsening consequences of stroke,traumatic brain injury,or epilepsy.One might assume that slow inward currents occurring with low frequency under physiological conditions might contribute to synaptic plasticity and memory formation.However,to state this,more experimental evidence from greater neuronal networks or the level of the individual is needed.In this review,I aimed to summarize findings on slow inward currents and to speculate on the potential functions of it.
基金The study was supported by the National Natural Science Foundation of China(32101795,32301782)National Key Research and Development Program of China(2016YFD0100201-01)+2 种基金Liaoning Provincial Major Special Project of Agricultural Science and Technology(2022JH1/10200002,2021JH1/10400038)Key Research and Development Plan of Liaoning Science and Technology Department(2021JH2/1020027)Shenyang Seed Industry Innovation Project(22-318-2-12).
文摘Drought is one of the abiotic stresses limiting the production of soybean(Glycine max).Elucidation of the genetic and molecular basis of the slow-wilting(SW)trait of this crop offers the prospect of its genetic improvement.A panel of 188 accessions and a set of recombinant inbred lines produced from a cross between cultivars Liaodou 14 and Liaodou 21 were used to identify quantitative-trait loci(QTL)associated with SW.Plants were genotyped by Specific-locus amplified fragment sequencing and seedling leaf wilting was assessed under three water-stress treatments.A genome-wide association study identified 26 SW-associated single-nucleotide polymorphisms(SNPs),including three located in a 248-kb linkage-disequilibrium(LD)block on chromosome 2.Linkage mapping revealed a major-effect QTL,qSW2,associated with all three treatments and adjacent to the LD block.Fine mapping in a BC_(2)F_(3) population derived from a backcross between Liaodou 21 and R26 confined qSW2 to a 60-kb interval.Gene expression and sequence variation analysis identified the gene Glyma.02 g218100,encoding an auxin transcription factor,as a candidate gene for qSW2.Our results will contribute significantly to improving drought-resistant soybean cultivars by providing genetic information and resources.
基金supported by the National Natural Science Foundation of China(52304067,62273213)the Natural Science Foundation of Shandong Province of China(ZR2021QE073)+1 种基金the Natural Science Foundation of Shandong Province for Innovation and Development Joint Funds(ZR2022LZH001)the China Postdoctoral Science Foundation(2023M732111)。
文摘Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat exchanger structure and hydrogen liquefaction process(LH2). The methods of cryogenic visualization experiment, theoretical analysis and numerical simulation are conducted to study the falling film flow characteristics with the effect of co-current gas flow in LH2spiral wound heat exchanger.The results show that the flow rate of mixed refrigerant has a great influence on liquid film spreading process, falling film flow pattern and heat transfer performance. The liquid film of LH2mixed refrigerant with column flow pattern can not uniformly and completely cover the tube wall surface. As liquid flow rate increases, the falling film flow pattern evolves into sheet-column flow and sheet flow, and liquid film completely covers the surface of tube wall. With the increase of shear effect of gas-phase mixed refrigerant in the same direction, the liquid film gradually becomes unstable, and the flow pattern eventually evolves into a mist flow.
文摘The stability of inviscid incompressible swirling flow with slowly divergence is investigated A multiple scale expansion is used to develop a linear stability study of slowly divergent swirling flow with non-axisymmetric disturbances The differental equations of zero-order and first-order disturbance module and governing equation of amplitude variation due to slowly divergent flow are derved The plaschko s equation for slowly divergent swirl-free jet has been extended to slowly divergent flow with swirlin the present study.