A series of aviation lubrication oil 50-1-4φ samples were prepared with different RP-3 content, and then these sam- ples were analyzed by Fourier transform mid-infrared spectrometer (FTIR). The infrared region of ...A series of aviation lubrication oil 50-1-4φ samples were prepared with different RP-3 content, and then these sam- ples were analyzed by Fourier transform mid-infrared spectrometer (FTIR). The infrared region of 805--755 cm-1 was selected as quantitative area for determining fuel pollution level of aviation lubrication oil. Finally, correlation of the testing peak area and the fuel pollution level of corresponding samples were analyzed, and the regression equation was proposed. The results show that determining jet fuel pollution level of aviation lubricating oil by FTIR is feasible and reliable.展开更多
Hade 4 oilfield is located on the Hadexun tectonic belt north of the Manjiaer depression in the Tarim basin, whose main target layer is the Donghe sandstone reservoir, with a burial depth over 5,000m and an amplitude ...Hade 4 oilfield is located on the Hadexun tectonic belt north of the Manjiaer depression in the Tarim basin, whose main target layer is the Donghe sandstone reservoir, with a burial depth over 5,000m and an amplitude below 34m, at the bottom of the Carboniferous. The Donghe sandstone reservoir consists of littoral facies deposited quartz sandstones of the transgressive system tract, overlapping northward and pinching out. Exploration and development confirms that water-oil contact tilts from the southeast to the northwest with a drop height of nearly 80m. The reservoir, under the control of both the stratigraphic overlap pinch-out and tectonism, is a typical subtle reservoir. The Donghe sandstone reservoir in Hade 4 oilfield also has the feature of a large oil-bearing area (over 130 km2 proved), a small thickness (average efficient thickness below 6m) and a low abundance (below 50 × 104t/km2). Moreover, above the target layer developed a set of igneous rocks with an uneven thickness in the Permian formation, thus causing a great difficulty in research of the velocity field. Considering these features, an combination mode of exploration and development is adopted, namely by way of whole deployment, step-by-step enforcement and rolling development with key problems to be tackled, in order to further deepen the understanding and enlarge the fruits of exploration and development. The paper technically focuses its study on the following four aspects concerning problem tackling. First, to strengthen the collecting, processing and explanation of seismic data, improve the resolution, accurately recognize the pinch-out line of the Donghe sandstone reservoir by combining the drilling materials in order to make sure its distribution law; second, to strengthen the research on velocity field, improve the accuracy of variable speed mapping, make corrections by the data from newly- drilled key wells and, as a result, the precision of tectonic description is greatly improved; third, to strengthen the research on sequence stratigraphy and make sure the distribution law of the Donghe sandstone; and fourth, with a step- by-step extrapolation method, to deepen the cognition of the leaning water-oil contact, and by combining the tectonic description and drilling results, to make sure little by little the law of change of the water-oil contact. The exploration and development of the Donghe sandstone subtle reservoir in Hade 4 oilfield is a gradually perfected process. From 1998 when it was discovered till now, the reservoir has managed to make a benign circle of exploration and development, in which its reserve has gradually been enlarged, its production scale increased, and, in a word, it has used techniques necessary for this subtle reservoir in the Tarim basin.展开更多
Oxy fuel combustion and conventional cycle(currently working cycle) in Kazeroon plant are modeled using commercial thermodynamic modeling software. Economic evaluation of the two models regarding the resources of tran...Oxy fuel combustion and conventional cycle(currently working cycle) in Kazeroon plant are modeled using commercial thermodynamic modeling software. Economic evaluation of the two models regarding the resources of transport and injection of carbon dioxide into oil fields at Gachsaran for enhanced oil recovery in the various oil price indices is conducted and indices net present value(NPV) and internal rate of return on investment(IRR) are calculated. The results of the two models reveal that gross efficiency of the oxy fuel cycle is more than reference cycle(62% compared to 49.03%), but the net efficiency is less(41.85% compared to 47.92%) because of the high-energy consumption of the components, particularly air separation unit(ASU) in the oxy fuel cycle. In this model, pure carbon dioxide with pressure of 20×105 Pa and purity of 96.84% was captured. NOX emissions also decrease by 4289.7 tons per year due to separation of nitrogen in ASU. In this model, none of the components of oxy fuel cycle is a major engineering challenge. With increasing oil price, economic justification of oxy fuel combustion model increases. With the price of oil at $ 80 per barrel in mind and $ 31 per ton fines for emissions of carbon dioxide in the atmosphere, IRR is the same for both models.展开更多
Nanofluids because of their surface characteristics improve the oil production from reservoirs by enabling different enhanced recovery mechanisms such as wettability alteration,interfacial tension(IFT)reduction,oil vi...Nanofluids because of their surface characteristics improve the oil production from reservoirs by enabling different enhanced recovery mechanisms such as wettability alteration,interfacial tension(IFT)reduction,oil viscosity reduction,formation and stabilization of colloidal systems and the decrease in the asphaltene precipitation.To the best of the authors’ knowledge,the synthesis of a new nanocomposite has been studied in this paper for the first time.It consists of nanoparticles of both SiO2 and Fe3O4.Each nanoparticle has its individual surface property and has its distinct effect on the oil production of reservoirs.According to the previous studies,Fe3O4 has been used in the prevention or reduction of asphaltene precipitation and SiO2 has been considered for wettability alteration and/or reducing IFTs in enhanced oil recovery.According to the experimental results,the novel synthesized nanoparticles have increased the oil recovery by the synergistic effects of the formed particles markedly by activating the various mechanisms relative to the use of each of the nanoparticles in the micromodel individually.According to the results obtained for the use of this nanocomposite,understanding reservoir conditions plays an important role in the ultimate goal of enhancing oil recovery and the formation of stable emulsions plays an important role in oil recovery using this method.展开更多
Through continuous equipment technology transformation and full utilization of Ma Steel's abundant gas,the boiler no longer relies on fuel oil for stable combustion during boiler startup,sliding parameter shutdown...Through continuous equipment technology transformation and full utilization of Ma Steel's abundant gas,the boiler no longer relies on fuel oil for stable combustion during boiler startup,sliding parameter shutdown,and RB,thus achieving safe and stable operation of the boiler under any abnormal working conditions,and achieving good economic and social benefits.展开更多
Vehicle fuel economy will continue to increase in importance as world vehicle production grows and fuel supplies become more limited year by year.As OEMs strive to produce cars and trucks with greater fuel efficiency ...Vehicle fuel economy will continue to increase in importance as world vehicle production grows and fuel supplies become more limited year by year.As OEMs strive to produce cars and trucks with greater fuel efficiency and extended durability,additive technology developers are increasingly being asked to contribute to these goals from the lubricant side.Axle inefficiency can account for as much as 10% of the overall losses in an automotive driveline so improvements in axle efficiency can contribute greatly to improving vehicle fuel economy.For good durability,low axle oil operating temperatures are also needed to minimize oxidative and thermal degradation of the oil,reduce deposits and sludge formation,and extend oil drain intervals.To develop gear oils that can increase axle efficiency significantly while maintaining stable operating temperatures requires rig tests that are fast,precise and reproducible.This paper documents the development of a new axle test rig and test procedures and presents test results on several gear oils.The test results show the contributions of base oil viscosity,base oil chemistry,and additive chemistry on the fuel economy and temperature of the various oils.Having a dependable tool is enabling the development of new fuel-efficient and durable gear oil technology.展开更多
A method of synchronous-high-derivative spectfluor for identification of crude oil and fuel oil pollution is studied. The best operation conditions for the 2nd and 4th deriv, are set. To differentiate oil-spill at riv...A method of synchronous-high-derivative spectfluor for identification of crude oil and fuel oil pollution is studied. The best operation conditions for the 2nd and 4th deriv, are set. To differentiate oil-spill at river and sea, this method is rapid and simple, and the spectra have high resolution power as 'fingerprint'.展开更多
4-tert-butylstyrene-EPDM-divinylbenzene graft terpolymer (PBED) was prepared by graft cross-polymerization in toluene using BPO as an initiator. The gel-PBED and solPBED were isolated from extraction of tetrahydrofura...4-tert-butylstyrene-EPDM-divinylbenzene graft terpolymer (PBED) was prepared by graft cross-polymerization in toluene using BPO as an initiator. The gel-PBED and solPBED were isolated from extraction of tetrahydrofuran (THF), and then they were identified by IR spectroscopy. The maximum oil-absorptivity of gel-PBED produced from the optinum reaction conditions was 8 420% but its swelling rate was very low. The highest oil-absorptivity of photocrosslinked sol-PBED film was 5 800%. Although its oil absorbency was not as high as gel-PBED' s, swelling rate was higher than that of gelPBED and was suitable for commercial purpose. After swelling in oil, neither gel PBED nor photocrosslinked sol-PBED film having high oil-absorptivity had sufficient mechanical strength to be taken out of oil wholly. As is known, composite technique is one of the useful methods for reinforcing them. Fibers, sponges and non-woven cloths were used as reinforcers or supporters in this work. Oil-absorptivities and swelling kinetics were evaluated by method ASTM (F726 - 81 ) and an experimental equation. The mechanical properties and the morphologies of some composites were measured by tensile tester and SEM , respectively.展开更多
Naphthenic tire oils were used in winter tire tread compounding. Properties of compounds were compared with similar compounds made of other safe tire oils. Retreaded passenger car winter tires were prepared using the ...Naphthenic tire oils were used in winter tire tread compounding. Properties of compounds were compared with similar compounds made of other safe tire oils. Retreaded passenger car winter tires were prepared using the compounds. Traction and rolling resistance of the tires were determined in different weather conditions.It was shown that naphthenie oils may lead to improvement of winter traction and rolling resistance without compromising other tire properties.展开更多
Objective:The frequent consumption of deep-fried foods has been linked to high risk of certain non-communicable diseases.As a consequence,the safety of deep-fried oil(DFO)ingested with fried foods has been called into...Objective:The frequent consumption of deep-fried foods has been linked to high risk of certain non-communicable diseases.As a consequence,the safety of deep-fried oil(DFO)ingested with fried foods has been called into question.This study therefore evaluated the effects of DFO from palm kernel on serum 4-hydroxynonenal protein adduct formation,De Ritis ratio(DRR),liver histology and atherogenicity in Wistar rats and the role of vitamin C intervention.Methods:Deep-fried oil samples were characterized for total antioxidant capacity(TAC),degradation and metal contamination levels and compared against counterpart unused frying oil(UFO).In the animal experiment,both oil samples,sourced from commercial cooks,were orally administered,for 13 weeks,to sixty-two rats randomly divided into six test groups of two exposure levels alongside vitamin C control.After exposure,serum liver enzyme activities and lipoproteins levels were determined using colorimetric methods,while protein adducts levels were determined using enzyme-linked immunosorbent assay(ELISA).Histopathological examinations of liver tissues were also performed.Results:DFO had significantly lower(P=0.021)TAC,significantly higher(P=0.024)volatile acid and Pb concentrations compared to UFO.Exposure to DFO significantly increased(P<0.01)serum protein adduct formation,the De Ritis ratio and caused cytoplasmic vacuolation and pigment deposit on liver tissues compared to the control.Additionally,DFO exposures had an initial negative body weight gain rate that increased at the end of the study.Conclusion:However,co-administration of vitamin C significantly reduced(P<0.05)the De Ritis ratio and reduced the serum protein adducts levels by at least 15%.Concomitant intake of vitamin C and DFO can mitigate probable adverse effects.展开更多
The development of highly efficient catalysts for cathodes remains an important objective of fuel cell research. Here, we report Co3O4 nanoparticles assembled on a polypyrrole/graphene oxide electrocatalyst (C...The development of highly efficient catalysts for cathodes remains an important objective of fuel cell research. Here, we report Co3O4 nanoparticles assembled on a polypyrrole/graphene oxide electrocatalyst (Co3O4/Ppy/GO) as an efficient catalyst for the oxygen reduction reaction (ORR) in alkaline media. The catalyst was prepared via the hydrothermal reaction of Co2+ ions with Ppy-modified GO. The GO, Ppy/GO, and Co3O4/Ppy/GO were characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The incorporation of Ppy into GO nanosheets resulted in the formation of a nitrogen-modified GO po-rous structure, which acted as an efficient electron-transport network for the ORR. With further anchoring of Co3O4 on Ppy/GO, the as-prepared Co3O4/Ppy/GO exhibited excellent ORR activity and followed a four-electron route mechanism for the ORR in alkaline solution. An onset potential of -0.10 V vs. a saturated calomel electrode and a diffusion limiting current density of 2.30 mA/cm^2 were achieved for the Co3O4/Ppy/GO catalyst heated at 800 ℃; these values are comparable to those for noble-metal-based Pt/C catalysts. Our work demonstrates that Co3O4/Ppy/GO is highly active for the ORR. Notably, the Ppy coupling effects between Co3O4 and GO provide a new route for the preparation of efficient non-precious electrocatalysts with hierarchical porous structures for fuel cell applications.展开更多
Combustion of heavy fuels is one of the main sources of greenhouse gases, particulate emissions, ashes, NOxand SOx. Gasification is an advanced and environmentally friendly process that generates combustible and clean...Combustion of heavy fuels is one of the main sources of greenhouse gases, particulate emissions, ashes, NOxand SOx. Gasification is an advanced and environmentally friendly process that generates combustible and clean gas products such as hydrogen. Some entrained flow gasifiers operate with Heavy Fuel Oil(HFO) feedstock. In this application, HFO atomization is very important in determining the performance and efficiency of the gasifiers.The atomization characteristics of HFO(Mazut) discharging from a pressure-swirl atomizer(PSA) are studied for different pressures difference(Δp) and temperatures in the atmospheric ambient. The investigated parameters include atomizer mass flow rate( _m), discharge coefficient(CD), spray cone angle(θ), breakup length(Lb), the unstable wavelength of undulations on the liquid sheet(λs), global and local SMD(sauter mean diameter) and size distribution of droplets. The characteristics of Mazut sheet breakup are deduced from the shadowgraph technique. The experiments on Mazut film breakup were compared with the predictions obtained from the liquid film breakup model. Validity of the theory for predicting maximum unstable wavelength was investigated for HFO(as a highly viscous liquid). A modification on the formulation of maximum unstable wavelength was presented for HFO. SMD decreases by getting far from the atomizer. The measurement for SMD and θ were compared with the available correlations. The comparisons of the available correlations with the measurements of SMD andθ show a good agreement for Ballester and Varde correlations, respectively. The results show that the experimental sizing data could be presented by Rosin-Rammler distributions very well at different pressure difference and temperatures.展开更多
This paper analyzes the role of price discovery of Shanghai fuel oil futures market by using methods, such as unit root test, co-integration test, error correction model, Granger causality test, impulse-response fimct...This paper analyzes the role of price discovery of Shanghai fuel oil futures market by using methods, such as unit root test, co-integration test, error correction model, Granger causality test, impulse-response fimction and variance decomposition. The results showed that there exists a strong relationship between the spot price of Huangpu fuel oil spot market and the futures price of Shanghai fuel oil futures market. In addition, the Shanghai fuel oil futures market exhibits a highly effective price discovery function.展开更多
This paper presented a study on the strength and chloride resistance of mortars made with ternary blends of ordinary Portland cement (OPC), ground palm oil fuel ash (POA), and classified fly ash (FA). The mortar...This paper presented a study on the strength and chloride resistance of mortars made with ternary blends of ordinary Portland cement (OPC), ground palm oil fuel ash (POA), and classified fly ash (FA). The mortar mixtures were made with Portland cement type I containing 0-40wt% FA and POA. FA and POA with 1wt%-3wt% retained on a sieve No.325 were used. The compressive strength and rapid chloride penetration depth of mortars were determined. The results reveal that the use of ternary blended cements produces good strength mortars. The use of the blend of FA and POA also produces high strength mortars and excellent resistance to chloride penetration owing to the synergic effect of FA and POA. A mathematical analysis and two-parameter polynomial model were presented to predict the compressive strength. The mathematical model correlated well with the experimental results. The computer 3-D graphics of strength of the ternary blended mortars were also constructed and could be used to aid the understanding and the proportioning of the blended system.展开更多
Oxidative desulfurization(ODS)has been proved to be an efficient strategy for the production of clean fuel oil.Numerous metal-based materials have been employed as excellent ODS catalysts,but being hindered by their h...Oxidative desulfurization(ODS)has been proved to be an efficient strategy for the production of clean fuel oil.Numerous metal-based materials have been employed as excellent ODS catalysts,but being hindered by their high-cost and potential secondary pollution.In this work,we employed graphene analogous hexagonal boron nitride(h-BN)as a metal-free catalyst for ODS with hydrogen peroxide(H2O2)as the oxidant.The h-BN catalyst was characterized and proved to be a few-layered structure with relatively high specific surface areas.The h-BN catalyst showed a 99.4%of sulfur removal in fuel oil under the optimized reaction conditions.Besides,the h-BN can be recycled for 8 times without significant decrease in the catalytic performance.Detailed mechanism analysis found that it is the boron radicals in h-BN activated H2O2 to generate·OH species,which can readily oxidize sulfides to corresponding sulfones for separation.This work would provide another choice in choosing metal-free catalysts for ODS.展开更多
Synthesizing high-density fuel from lignocellulose can not only achieve green and low-carbon development,but also expand the feedstock source of hydrocarbon fuel.Here,we reported a route of producing high-density fuel...Synthesizing high-density fuel from lignocellulose can not only achieve green and low-carbon development,but also expand the feedstock source of hydrocarbon fuel.Here,we reported a route of producing high-density fuel from lignin oil and hemicellulose derivative cyclopentanol through alkylation and hydrodeoxygenation,HY with SiO_(2)/Al_(2)O_(3) molar ratio of 5.3 was screened as the alkylation catalyst in the reaction of model phenolic compounds and mixtures,and the reaction conditions were optimized to achieve conversion of phenolic compounds higher than 87%and selectivity of bicyclic and tricyclic products higher than 99%.Then two phenolic pools simulating the composition of two typic lignin oils were studied to validate the alkylation and analyze the competition mechanism of phenolic compounds in mixture system.Finally,real lignin oil from depolymerized of beech powder was tested,and notably80%of phenolic monomers in the oil were converted into fuel precursor.After hydrodeoxygenation,the alkylated product was converted to fuel blend with a density of 0.91 g/mL at 20℃and a freezing point lower than-60℃,very promising as high density fuel.This work provides a facile and energyefficient way of synthesizing high-performance jet fuel directly from lignocellulosic derivatives,which decreases processing energy consumption and improve the utilization rate of feedstock.展开更多
This study aims to evaluate the subacute toxic effects of oil under different treatments on marine organism by simulating natural contaminative processes. In this study, 120# (RMD15) fuel oil was selected as the pol...This study aims to evaluate the subacute toxic effects of oil under different treatments on marine organism by simulating natural contaminative processes. In this study, 120# (RMD15) fuel oil was selected as the pollutant and marine medaka (Oryzias melastigma) embryos as the experimental organism. The developmental toxicity of different volume concentrations (0.05%, 0.2%, 1% and 5%) of water-accommodated fractions, biologically-enhanced water-accommodated fractions, and chemically-enhanced water-accommodated fractions on the embryos in different exposure time (8, 15 and 22 d) were compared and the content of relevant polycyclic aromatic hydrocarbons (PAHs) was studied (in dispersion and in vivo). The subacute toxic effects were assessed in terms of antioxidant activities of enzymes (superoxide dismutase, catalase and glutathione S-transferase) and the blue sac disease (BSD) indexes.The results showed that the BSD indexes of the treatment groups were significantly higher than the respective control groups and showed positive correlations with both concentration and exposure time. The experiments with three antioxidant enzymes indicated that enzymatic activities of the embryos changed dramatically under the oxidation stress of petroleum hydrocarbons, especially after adding the dispersants. With the increase of petroleum hydrocarbon concentration and exposure time, the three enzymes showed different degrees of induction and inhibition effects.展开更多
BACKGROUND Esophageal cancer is one of the most common cancers around the world, and it has high incidence and mortality rates. The conventional therapy for esophageal cancer is radiotherapy, although its effect is hi...BACKGROUND Esophageal cancer is one of the most common cancers around the world, and it has high incidence and mortality rates. The conventional therapy for esophageal cancer is radiotherapy, although its effect is highly limited by the resistance of esophageal cancer cells. Thus, strong radiosensitizers can be very crucial during radiotherapy against esophageal cancer. Brucea javanica oil emulsion (BJOE) is a widely used drug against various cancers, such as liver, colon, and ovarian cancer. However, its anti-cancer effect and mechanism and the use of BJOE as a radiosensitizer have not been explored in esophageal cancer. AIM To evaluate the anti-cancer effect and mechanism of BJOE and explore the potential use of BJOE as a radiosensitizer during radiotherapy. METHODS The inhibitory effect of BJOE and its enhancement function with radiation on cell viability were examined with the calculated half-maximal effective concentration and half-maximal lethal concentration. The influence of BJOE on cell migration and invasion were measured with EC109 and JAR cells by wound-healing and transwell assay. Clonogenesis and apoptotic rate, which was measured by Hoechst staining, were investigated to confirm its enhancement function with radiation. To investigate the molecular pathway underlying the effect of BJOE, the expressions of several apoptosis- and cycle-related proteins was detected by western blotting.cell lines more than normal cell lines, and it markedly reduced migration and invasion in esophageal cancer cells (EC109 and JAR). Moreover, it promoted cell apoptosis and enhanced the effect of radiotherapy against esophageal cancerous cells. In the viability test, the values of half-maximal effective concentration and half-maximal lethal concentration were reduced. Compared to the control, only around 1/5 colonies formed when using BJOE and radiation together in the clonogenic assay. The apoptotic rate in EC109 was obviously promoted when BJOE was added during radiotherapy. Our study suggests that the expression of the apoptosis-proteins Bax and p21 were increased, while the expression of Bcl-2 was stable. Further detection of downstream proteins revealed that the expression of cyclin D1 and cyclin-dependent kinase 4/6 were significantly decreased. CONCLUSION BJOE has a strong anti-cancer effect on esophageal cancer and can be used as a radiosensitizer to promote apoptosis in cancerous esophageal cells via the cyclin D1-cyclin-dependent kinase 4/6 axis.展开更多
文摘A series of aviation lubrication oil 50-1-4φ samples were prepared with different RP-3 content, and then these sam- ples were analyzed by Fourier transform mid-infrared spectrometer (FTIR). The infrared region of 805--755 cm-1 was selected as quantitative area for determining fuel pollution level of aviation lubrication oil. Finally, correlation of the testing peak area and the fuel pollution level of corresponding samples were analyzed, and the regression equation was proposed. The results show that determining jet fuel pollution level of aviation lubricating oil by FTIR is feasible and reliable.
文摘Hade 4 oilfield is located on the Hadexun tectonic belt north of the Manjiaer depression in the Tarim basin, whose main target layer is the Donghe sandstone reservoir, with a burial depth over 5,000m and an amplitude below 34m, at the bottom of the Carboniferous. The Donghe sandstone reservoir consists of littoral facies deposited quartz sandstones of the transgressive system tract, overlapping northward and pinching out. Exploration and development confirms that water-oil contact tilts from the southeast to the northwest with a drop height of nearly 80m. The reservoir, under the control of both the stratigraphic overlap pinch-out and tectonism, is a typical subtle reservoir. The Donghe sandstone reservoir in Hade 4 oilfield also has the feature of a large oil-bearing area (over 130 km2 proved), a small thickness (average efficient thickness below 6m) and a low abundance (below 50 × 104t/km2). Moreover, above the target layer developed a set of igneous rocks with an uneven thickness in the Permian formation, thus causing a great difficulty in research of the velocity field. Considering these features, an combination mode of exploration and development is adopted, namely by way of whole deployment, step-by-step enforcement and rolling development with key problems to be tackled, in order to further deepen the understanding and enlarge the fruits of exploration and development. The paper technically focuses its study on the following four aspects concerning problem tackling. First, to strengthen the collecting, processing and explanation of seismic data, improve the resolution, accurately recognize the pinch-out line of the Donghe sandstone reservoir by combining the drilling materials in order to make sure its distribution law; second, to strengthen the research on velocity field, improve the accuracy of variable speed mapping, make corrections by the data from newly- drilled key wells and, as a result, the precision of tectonic description is greatly improved; third, to strengthen the research on sequence stratigraphy and make sure the distribution law of the Donghe sandstone; and fourth, with a step- by-step extrapolation method, to deepen the cognition of the leaning water-oil contact, and by combining the tectonic description and drilling results, to make sure little by little the law of change of the water-oil contact. The exploration and development of the Donghe sandstone subtle reservoir in Hade 4 oilfield is a gradually perfected process. From 1998 when it was discovered till now, the reservoir has managed to make a benign circle of exploration and development, in which its reserve has gradually been enlarged, its production scale increased, and, in a word, it has used techniques necessary for this subtle reservoir in the Tarim basin.
文摘Oxy fuel combustion and conventional cycle(currently working cycle) in Kazeroon plant are modeled using commercial thermodynamic modeling software. Economic evaluation of the two models regarding the resources of transport and injection of carbon dioxide into oil fields at Gachsaran for enhanced oil recovery in the various oil price indices is conducted and indices net present value(NPV) and internal rate of return on investment(IRR) are calculated. The results of the two models reveal that gross efficiency of the oxy fuel cycle is more than reference cycle(62% compared to 49.03%), but the net efficiency is less(41.85% compared to 47.92%) because of the high-energy consumption of the components, particularly air separation unit(ASU) in the oxy fuel cycle. In this model, pure carbon dioxide with pressure of 20×105 Pa and purity of 96.84% was captured. NOX emissions also decrease by 4289.7 tons per year due to separation of nitrogen in ASU. In this model, none of the components of oxy fuel cycle is a major engineering challenge. With increasing oil price, economic justification of oxy fuel combustion model increases. With the price of oil at $ 80 per barrel in mind and $ 31 per ton fines for emissions of carbon dioxide in the atmosphere, IRR is the same for both models.
文摘Nanofluids because of their surface characteristics improve the oil production from reservoirs by enabling different enhanced recovery mechanisms such as wettability alteration,interfacial tension(IFT)reduction,oil viscosity reduction,formation and stabilization of colloidal systems and the decrease in the asphaltene precipitation.To the best of the authors’ knowledge,the synthesis of a new nanocomposite has been studied in this paper for the first time.It consists of nanoparticles of both SiO2 and Fe3O4.Each nanoparticle has its individual surface property and has its distinct effect on the oil production of reservoirs.According to the previous studies,Fe3O4 has been used in the prevention or reduction of asphaltene precipitation and SiO2 has been considered for wettability alteration and/or reducing IFTs in enhanced oil recovery.According to the experimental results,the novel synthesized nanoparticles have increased the oil recovery by the synergistic effects of the formed particles markedly by activating the various mechanisms relative to the use of each of the nanoparticles in the micromodel individually.According to the results obtained for the use of this nanocomposite,understanding reservoir conditions plays an important role in the ultimate goal of enhancing oil recovery and the formation of stable emulsions plays an important role in oil recovery using this method.
文摘Through continuous equipment technology transformation and full utilization of Ma Steel's abundant gas,the boiler no longer relies on fuel oil for stable combustion during boiler startup,sliding parameter shutdown,and RB,thus achieving safe and stable operation of the boiler under any abnormal working conditions,and achieving good economic and social benefits.
文摘Vehicle fuel economy will continue to increase in importance as world vehicle production grows and fuel supplies become more limited year by year.As OEMs strive to produce cars and trucks with greater fuel efficiency and extended durability,additive technology developers are increasingly being asked to contribute to these goals from the lubricant side.Axle inefficiency can account for as much as 10% of the overall losses in an automotive driveline so improvements in axle efficiency can contribute greatly to improving vehicle fuel economy.For good durability,low axle oil operating temperatures are also needed to minimize oxidative and thermal degradation of the oil,reduce deposits and sludge formation,and extend oil drain intervals.To develop gear oils that can increase axle efficiency significantly while maintaining stable operating temperatures requires rig tests that are fast,precise and reproducible.This paper documents the development of a new axle test rig and test procedures and presents test results on several gear oils.The test results show the contributions of base oil viscosity,base oil chemistry,and additive chemistry on the fuel economy and temperature of the various oils.Having a dependable tool is enabling the development of new fuel-efficient and durable gear oil technology.
文摘A method of synchronous-high-derivative spectfluor for identification of crude oil and fuel oil pollution is studied. The best operation conditions for the 2nd and 4th deriv, are set. To differentiate oil-spill at river and sea, this method is rapid and simple, and the spectra have high resolution power as 'fingerprint'.
文摘4-tert-butylstyrene-EPDM-divinylbenzene graft terpolymer (PBED) was prepared by graft cross-polymerization in toluene using BPO as an initiator. The gel-PBED and solPBED were isolated from extraction of tetrahydrofuran (THF), and then they were identified by IR spectroscopy. The maximum oil-absorptivity of gel-PBED produced from the optinum reaction conditions was 8 420% but its swelling rate was very low. The highest oil-absorptivity of photocrosslinked sol-PBED film was 5 800%. Although its oil absorbency was not as high as gel-PBED' s, swelling rate was higher than that of gelPBED and was suitable for commercial purpose. After swelling in oil, neither gel PBED nor photocrosslinked sol-PBED film having high oil-absorptivity had sufficient mechanical strength to be taken out of oil wholly. As is known, composite technique is one of the useful methods for reinforcing them. Fibers, sponges and non-woven cloths were used as reinforcers or supporters in this work. Oil-absorptivities and swelling kinetics were evaluated by method ASTM (F726 - 81 ) and an experimental equation. The mechanical properties and the morphologies of some composites were measured by tensile tester and SEM , respectively.
文摘Naphthenic tire oils were used in winter tire tread compounding. Properties of compounds were compared with similar compounds made of other safe tire oils. Retreaded passenger car winter tires were prepared using the compounds. Traction and rolling resistance of the tires were determined in different weather conditions.It was shown that naphthenie oils may lead to improvement of winter traction and rolling resistance without compromising other tire properties.
文摘Objective:The frequent consumption of deep-fried foods has been linked to high risk of certain non-communicable diseases.As a consequence,the safety of deep-fried oil(DFO)ingested with fried foods has been called into question.This study therefore evaluated the effects of DFO from palm kernel on serum 4-hydroxynonenal protein adduct formation,De Ritis ratio(DRR),liver histology and atherogenicity in Wistar rats and the role of vitamin C intervention.Methods:Deep-fried oil samples were characterized for total antioxidant capacity(TAC),degradation and metal contamination levels and compared against counterpart unused frying oil(UFO).In the animal experiment,both oil samples,sourced from commercial cooks,were orally administered,for 13 weeks,to sixty-two rats randomly divided into six test groups of two exposure levels alongside vitamin C control.After exposure,serum liver enzyme activities and lipoproteins levels were determined using colorimetric methods,while protein adducts levels were determined using enzyme-linked immunosorbent assay(ELISA).Histopathological examinations of liver tissues were also performed.Results:DFO had significantly lower(P=0.021)TAC,significantly higher(P=0.024)volatile acid and Pb concentrations compared to UFO.Exposure to DFO significantly increased(P<0.01)serum protein adduct formation,the De Ritis ratio and caused cytoplasmic vacuolation and pigment deposit on liver tissues compared to the control.Additionally,DFO exposures had an initial negative body weight gain rate that increased at the end of the study.Conclusion:However,co-administration of vitamin C significantly reduced(P<0.05)the De Ritis ratio and reduced the serum protein adducts levels by at least 15%.Concomitant intake of vitamin C and DFO can mitigate probable adverse effects.
基金supported by the National Natural Science Foundation of China(21373042)~~
文摘The development of highly efficient catalysts for cathodes remains an important objective of fuel cell research. Here, we report Co3O4 nanoparticles assembled on a polypyrrole/graphene oxide electrocatalyst (Co3O4/Ppy/GO) as an efficient catalyst for the oxygen reduction reaction (ORR) in alkaline media. The catalyst was prepared via the hydrothermal reaction of Co2+ ions with Ppy-modified GO. The GO, Ppy/GO, and Co3O4/Ppy/GO were characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The incorporation of Ppy into GO nanosheets resulted in the formation of a nitrogen-modified GO po-rous structure, which acted as an efficient electron-transport network for the ORR. With further anchoring of Co3O4 on Ppy/GO, the as-prepared Co3O4/Ppy/GO exhibited excellent ORR activity and followed a four-electron route mechanism for the ORR in alkaline solution. An onset potential of -0.10 V vs. a saturated calomel electrode and a diffusion limiting current density of 2.30 mA/cm^2 were achieved for the Co3O4/Ppy/GO catalyst heated at 800 ℃; these values are comparable to those for noble-metal-based Pt/C catalysts. Our work demonstrates that Co3O4/Ppy/GO is highly active for the ORR. Notably, the Ppy coupling effects between Co3O4 and GO provide a new route for the preparation of efficient non-precious electrocatalysts with hierarchical porous structures for fuel cell applications.
文摘Combustion of heavy fuels is one of the main sources of greenhouse gases, particulate emissions, ashes, NOxand SOx. Gasification is an advanced and environmentally friendly process that generates combustible and clean gas products such as hydrogen. Some entrained flow gasifiers operate with Heavy Fuel Oil(HFO) feedstock. In this application, HFO atomization is very important in determining the performance and efficiency of the gasifiers.The atomization characteristics of HFO(Mazut) discharging from a pressure-swirl atomizer(PSA) are studied for different pressures difference(Δp) and temperatures in the atmospheric ambient. The investigated parameters include atomizer mass flow rate( _m), discharge coefficient(CD), spray cone angle(θ), breakup length(Lb), the unstable wavelength of undulations on the liquid sheet(λs), global and local SMD(sauter mean diameter) and size distribution of droplets. The characteristics of Mazut sheet breakup are deduced from the shadowgraph technique. The experiments on Mazut film breakup were compared with the predictions obtained from the liquid film breakup model. Validity of the theory for predicting maximum unstable wavelength was investigated for HFO(as a highly viscous liquid). A modification on the formulation of maximum unstable wavelength was presented for HFO. SMD decreases by getting far from the atomizer. The measurement for SMD and θ were compared with the available correlations. The comparisons of the available correlations with the measurements of SMD andθ show a good agreement for Ballester and Varde correlations, respectively. The results show that the experimental sizing data could be presented by Rosin-Rammler distributions very well at different pressure difference and temperatures.
文摘This paper analyzes the role of price discovery of Shanghai fuel oil futures market by using methods, such as unit root test, co-integration test, error correction model, Granger causality test, impulse-response fimction and variance decomposition. The results showed that there exists a strong relationship between the spot price of Huangpu fuel oil spot market and the futures price of Shanghai fuel oil futures market. In addition, the Shanghai fuel oil futures market exhibits a highly effective price discovery function.
文摘This paper presented a study on the strength and chloride resistance of mortars made with ternary blends of ordinary Portland cement (OPC), ground palm oil fuel ash (POA), and classified fly ash (FA). The mortar mixtures were made with Portland cement type I containing 0-40wt% FA and POA. FA and POA with 1wt%-3wt% retained on a sieve No.325 were used. The compressive strength and rapid chloride penetration depth of mortars were determined. The results reveal that the use of ternary blended cements produces good strength mortars. The use of the blend of FA and POA also produces high strength mortars and excellent resistance to chloride penetration owing to the synergic effect of FA and POA. A mathematical analysis and two-parameter polynomial model were presented to predict the compressive strength. The mathematical model correlated well with the experimental results. The computer 3-D graphics of strength of the ternary blended mortars were also constructed and could be used to aid the understanding and the proportioning of the blended system.
基金All authors appreciate the financial support from the National Key R&D Program of China(2017YFB0306504)the National Natural Science Foundation of China(No.21722604,21878133 and 21908082)+2 种基金China Postdoctoral Science Foundation(No.2019M651743)Natural Science Foundation of Jiangsu Province(BK20190852,BK20190854)Natural Science Foundation for Jiangsu Colleges and Universities(19KJB530005).
文摘Oxidative desulfurization(ODS)has been proved to be an efficient strategy for the production of clean fuel oil.Numerous metal-based materials have been employed as excellent ODS catalysts,but being hindered by their high-cost and potential secondary pollution.In this work,we employed graphene analogous hexagonal boron nitride(h-BN)as a metal-free catalyst for ODS with hydrogen peroxide(H2O2)as the oxidant.The h-BN catalyst was characterized and proved to be a few-layered structure with relatively high specific surface areas.The h-BN catalyst showed a 99.4%of sulfur removal in fuel oil under the optimized reaction conditions.Besides,the h-BN can be recycled for 8 times without significant decrease in the catalytic performance.Detailed mechanism analysis found that it is the boron radicals in h-BN activated H2O2 to generate·OH species,which can readily oxidize sulfides to corresponding sulfones for separation.This work would provide another choice in choosing metal-free catalysts for ODS.
基金supported by the National Key Research and Development Program(2021YFC2104400)the Tianjin Science and Technology Plan Project(21JCQNJC00340)the Haihe Laboratory of Sustainable Chemical Transformations。
文摘Synthesizing high-density fuel from lignocellulose can not only achieve green and low-carbon development,but also expand the feedstock source of hydrocarbon fuel.Here,we reported a route of producing high-density fuel from lignin oil and hemicellulose derivative cyclopentanol through alkylation and hydrodeoxygenation,HY with SiO_(2)/Al_(2)O_(3) molar ratio of 5.3 was screened as the alkylation catalyst in the reaction of model phenolic compounds and mixtures,and the reaction conditions were optimized to achieve conversion of phenolic compounds higher than 87%and selectivity of bicyclic and tricyclic products higher than 99%.Then two phenolic pools simulating the composition of two typic lignin oils were studied to validate the alkylation and analyze the competition mechanism of phenolic compounds in mixture system.Finally,real lignin oil from depolymerized of beech powder was tested,and notably80%of phenolic monomers in the oil were converted into fuel precursor.After hydrodeoxygenation,the alkylated product was converted to fuel blend with a density of 0.91 g/mL at 20℃and a freezing point lower than-60℃,very promising as high density fuel.This work provides a facile and energyefficient way of synthesizing high-performance jet fuel directly from lignocellulosic derivatives,which decreases processing energy consumption and improve the utilization rate of feedstock.
基金The National Natural Science Foundation of China under contract No.41276105/D0608
文摘This study aims to evaluate the subacute toxic effects of oil under different treatments on marine organism by simulating natural contaminative processes. In this study, 120# (RMD15) fuel oil was selected as the pollutant and marine medaka (Oryzias melastigma) embryos as the experimental organism. The developmental toxicity of different volume concentrations (0.05%, 0.2%, 1% and 5%) of water-accommodated fractions, biologically-enhanced water-accommodated fractions, and chemically-enhanced water-accommodated fractions on the embryos in different exposure time (8, 15 and 22 d) were compared and the content of relevant polycyclic aromatic hydrocarbons (PAHs) was studied (in dispersion and in vivo). The subacute toxic effects were assessed in terms of antioxidant activities of enzymes (superoxide dismutase, catalase and glutathione S-transferase) and the blue sac disease (BSD) indexes.The results showed that the BSD indexes of the treatment groups were significantly higher than the respective control groups and showed positive correlations with both concentration and exposure time. The experiments with three antioxidant enzymes indicated that enzymatic activities of the embryos changed dramatically under the oxidation stress of petroleum hydrocarbons, especially after adding the dispersants. With the increase of petroleum hydrocarbon concentration and exposure time, the three enzymes showed different degrees of induction and inhibition effects.
文摘BACKGROUND Esophageal cancer is one of the most common cancers around the world, and it has high incidence and mortality rates. The conventional therapy for esophageal cancer is radiotherapy, although its effect is highly limited by the resistance of esophageal cancer cells. Thus, strong radiosensitizers can be very crucial during radiotherapy against esophageal cancer. Brucea javanica oil emulsion (BJOE) is a widely used drug against various cancers, such as liver, colon, and ovarian cancer. However, its anti-cancer effect and mechanism and the use of BJOE as a radiosensitizer have not been explored in esophageal cancer. AIM To evaluate the anti-cancer effect and mechanism of BJOE and explore the potential use of BJOE as a radiosensitizer during radiotherapy. METHODS The inhibitory effect of BJOE and its enhancement function with radiation on cell viability were examined with the calculated half-maximal effective concentration and half-maximal lethal concentration. The influence of BJOE on cell migration and invasion were measured with EC109 and JAR cells by wound-healing and transwell assay. Clonogenesis and apoptotic rate, which was measured by Hoechst staining, were investigated to confirm its enhancement function with radiation. To investigate the molecular pathway underlying the effect of BJOE, the expressions of several apoptosis- and cycle-related proteins was detected by western blotting.cell lines more than normal cell lines, and it markedly reduced migration and invasion in esophageal cancer cells (EC109 and JAR). Moreover, it promoted cell apoptosis and enhanced the effect of radiotherapy against esophageal cancerous cells. In the viability test, the values of half-maximal effective concentration and half-maximal lethal concentration were reduced. Compared to the control, only around 1/5 colonies formed when using BJOE and radiation together in the clonogenic assay. The apoptotic rate in EC109 was obviously promoted when BJOE was added during radiotherapy. Our study suggests that the expression of the apoptosis-proteins Bax and p21 were increased, while the expression of Bcl-2 was stable. Further detection of downstream proteins revealed that the expression of cyclin D1 and cyclin-dependent kinase 4/6 were significantly decreased. CONCLUSION BJOE has a strong anti-cancer effect on esophageal cancer and can be used as a radiosensitizer to promote apoptosis in cancerous esophageal cells via the cyclin D1-cyclin-dependent kinase 4/6 axis.