In this paper, we first study the latent relation between the conservative quantity and the symmetry of nonholonomic dynamical systems without any additional restrictive conditions to its virtual displacement, and the...In this paper, we first study the latent relation between the conservative quantity and the symmetry of nonholonomic dynamical systems without any additional restrictive conditions to its virtual displacement, and then establish Noether's theorem and Noether's inverse theorem of Vacco dynamics. Lastly, we give two examples to illustrate the application of result of this paper.展开更多
In this paper, a Birkhoff-Noether method of solving ordinary differential equations is presented. The differential equations can be expressed in terms of Birkhoff's equations. The first integrals for differential equ...In this paper, a Birkhoff-Noether method of solving ordinary differential equations is presented. The differential equations can be expressed in terms of Birkhoff's equations. The first integrals for differential equations can be found by using the Noether theory for Birkhoffian systems. Two examples are given to illustrate the application of the method.展开更多
The purpose of this paper is to provide a new method called the Lagrange-Noether method for solving second-order differential equations. The method is, firstly, to write the second-order differential equations complet...The purpose of this paper is to provide a new method called the Lagrange-Noether method for solving second-order differential equations. The method is, firstly, to write the second-order differential equations completely or partially in the form of Lagrange equations, and secondly, to obtain the integrals of the equations by using the Noether theory of the Lagrange system. An example is given to illustrate the application of the result.展开更多
This paper studies a conformal invariance and an integration of first-order differential equations. It obtains the corresponding infinitesimal generators of conformal invariance by using the symmetry of the differenti...This paper studies a conformal invariance and an integration of first-order differential equations. It obtains the corresponding infinitesimal generators of conformal invariance by using the symmetry of the differential equations, and expresses the differential equations by the equations of a Birkhoff system or a generalized Birkhoff system. If the infinitesimal generators are those of a Noether symmetry, the conserved quantity can be obtained by using the Noether theory of the Birkhoff system or the generalized Birkhoff system.展开更多
A differential equation of first order can be expressed by the equation of motion of a mechanical system. In this paper, three methods of analytical mechanics, i.e. the Hamilton-Noether method, the Lagrange-Noether me...A differential equation of first order can be expressed by the equation of motion of a mechanical system. In this paper, three methods of analytical mechanics, i.e. the Hamilton-Noether method, the Lagrange-Noether method and the Poisson method, are given to solve a differential equation of first order, of which the way may be called the mechanical methodology in mathematics.展开更多
文摘In this paper, we first study the latent relation between the conservative quantity and the symmetry of nonholonomic dynamical systems without any additional restrictive conditions to its virtual displacement, and then establish Noether's theorem and Noether's inverse theorem of Vacco dynamics. Lastly, we give two examples to illustrate the application of result of this paper.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10572021 and 10472040) and Doctoral Programme Foundation of Institution of Higher Education of China (Grant No 20040007022).
文摘In this paper, a Birkhoff-Noether method of solving ordinary differential equations is presented. The differential equations can be expressed in terms of Birkhoff's equations. The first integrals for differential equations can be found by using the Noether theory for Birkhoffian systems. Two examples are given to illustrate the application of the method.
基金supported by the National Natural Science Foundation of China (Grant Nos 10272021 and 10572021)the Doctoral Program Foundation of Institution of Higher Education of China (Grant No 20040007022)the Fund for Fundamental Research of BIT (Grant No 20070742005)
文摘The purpose of this paper is to provide a new method called the Lagrange-Noether method for solving second-order differential equations. The method is, firstly, to write the second-order differential equations completely or partially in the form of Lagrange equations, and secondly, to obtain the integrals of the equations by using the Noether theory of the Lagrange system. An example is given to illustrate the application of the result.
基金supported by the National Natural Science Foundation of China (Grant Nos 10572021 and 10772025)the Doctoral Programme Foundation of Institution of Higher Education of China (Grant No 20040007022)
文摘This paper studies a conformal invariance and an integration of first-order differential equations. It obtains the corresponding infinitesimal generators of conformal invariance by using the symmetry of the differential equations, and expresses the differential equations by the equations of a Birkhoff system or a generalized Birkhoff system. If the infinitesimal generators are those of a Noether symmetry, the conserved quantity can be obtained by using the Noether theory of the Birkhoff system or the generalized Birkhoff system.
基金Project supported by the National Natural Science Foundation of China (Grant No 10272021) and the Doctorate Foundation of the State Education Ministry of China (Grant No 20040007022).
文摘A differential equation of first order can be expressed by the equation of motion of a mechanical system. In this paper, three methods of analytical mechanics, i.e. the Hamilton-Noether method, the Lagrange-Noether method and the Poisson method, are given to solve a differential equation of first order, of which the way may be called the mechanical methodology in mathematics.