In order to reduce the noise and vibration of the diesel engine,it is crucial to exactly identify the engine noise source character.Based on "two-microphone" method,the sound intensity measurement of a vehic...In order to reduce the noise and vibration of the diesel engine,it is crucial to exactly identify the engine noise source character.Based on "two-microphone" method,the sound intensity measurement of a vehicle four-stroke diesel engine was carried out in a hemi-anechoic chamber.Then the sound intensity contour maps were obtained from the measurement results and the main noise components of different frequencies on all the measurement surfaces were picked out to construct contour maps.By analysizing the relationship between the characteristics of contour maps and the space distribution of the engine compartment,the major sources of the exterior radiation noise of the diesel engine were identified.The results provided a creditable basis for improving the noise performance of the engine in the next phase.展开更多
The aerodynamic noise of high-speed trains passing through a tunnel has gradually become an important issue.Numerical approaches for predicting the aerodynamic noise sources of high-speed trains running in tunnels are...The aerodynamic noise of high-speed trains passing through a tunnel has gradually become an important issue.Numerical approaches for predicting the aerodynamic noise sources of high-speed trains running in tunnels are the key to alleviating aerodynamic noise issues.In this paper,two typical numerical methods are used to calculate the aerodynamic noise of high-speed trains.These are the static method combined with non-reflective boundary conditions and the dynamic mesh method combined with adaptive mesh.The fluctuating pressure,flow field and aerodynamic noise source are numerically simulated using the abovemethods.The results showthat the fluctuating pressure,flow field structure and noise source characteristics obtained using different methods,are basically consistent.Compared to the dynamic mesh method,the pressure,vortex size and noise source radiation intensity,obtained by the static method,are larger.The differences are in the tail car and its wake.The two calculation methods show that the spectral characteristics of the surface noise source are consistent.The maximum difference in the sound pressure level is 1.9 dBA.The static method is more efficient and more suitable for engineering applications.展开更多
In order to determine the characteristics of noise source accurately, the noisedistribution at different frequencies was determined by taking the differences into accountbetween aerodynamic noises, mechanical noise, e...In order to determine the characteristics of noise source accurately, the noisedistribution at different frequencies was determined by taking the differences into accountbetween aerodynamic noises, mechanical noise, electrical noise in terms of in frequencyand intensity.Designed a least squares wavelet with high precision and special effects forstrong interference zone (multi-source noise), which is applicable to strong noise analysisproduced by underground mine, and obtained distribution of noise in different frequencyand achieves good results.According to the results of decomposition, the characteristicsof noise sources production can be more accurately determined, which lays a good foundationfor the follow-up focused and targeted noise control, and provides a new methodthat is greatly applicable for testing and analyzing noise control.展开更多
A mathematical model of deterndulng sound power by using the scanning method is developed. It is assumed that the scanning speed is constant and the noise source is stationary The accuracy of estimating sound power al...A mathematical model of deterndulng sound power by using the scanning method is developed. It is assumed that the scanning speed is constant and the noise source is stationary The accuracy of estimating sound power along some simple paths on the surfaces such as rectangle, disc and hemisphere is analyzed. It is argued that the accuracy of estimating sound power is strongly depended on a suitable selection of scan path. The accurate estdriation of sound power can be made by scanning along some simple paths.展开更多
In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applicati...In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applications, especially in passive radar systems. In this paper, we propose a joint DOA and polarization estimation method for unequal power sources based on the reconstructed noise subspace. The invariance property of noise subspace(IPNS) to power of sources has been proved an effective method to estimate DOA of unequal power sources. We develop the IPNS method for joint DOA and polarization estimation based on a dual polarized array. Moreover, we propose an improved IPNS method based on the reconstructed noise subspace, which has higher resolution probability than the IPNS method. It is theoretically proved that the IPNS to power of sources is still valid when the eigenvalues of the noise subspace are changed artificially. Simulation results show that the resolution probability of the proposed method is enhanced compared with the methods based on the IPNS and the polarimetric multiple signal classification(MUSIC) method. Meanwhile, the proposed method has approximately the same estimation accuracy as the IPNS method for the weak source.展开更多
Engine noise source identification is essential for making noise reduction strategies.Predominant noise sources of engines are normally identified as some cover components such as oil pan, valve cover and front gear c...Engine noise source identification is essential for making noise reduction strategies.Predominant noise sources of engines are normally identified as some cover components such as oil pan, valve cover and front gear cover etc. The radiated noise sources of a 6-cylinder construction diesel engine are identified with two methods-lead covering technique and surface vibration technique,and the ranking of the major cover on the basis of acoustic power is presented in this paper. Firstly the sound power level of these cover components and their contributions to the total acoustic power are determined with lead covering method under hemi-anechoic condition. Then the vibration characteristics of these components are investigated. The sound power level of various components is predicted via the mean square area average vibration. Both results basically agree well and verify the effectiveness of both techniques in engineering field.展开更多
A new approach to conductive electromagnetic interference (EMI) noise source modeling, i. e. the source internal impedance extraction, is presented. First, the impedance magnitude is achieved through an exciting pro...A new approach to conductive electromagnetic interference (EMI) noise source modeling, i. e. the source internal impedance extraction, is presented. First, the impedance magnitude is achieved through an exciting probe and a detecting probe, or through calculations based on insertion loss measurement results when inserting a series nigh-value known impedance or a shunt low-value known impedance in the circuit. Then the impedance phase is extracted by the Hilbert transform (HT) of the logarithm of the obtained impedance magnitude. Performance studies show that the estimated phase error can increase greatly at a zero frequency in the Hilbert transform because of the existence of a singular point, and this effect can be eliminated by introducing a zero-point when the noise source does not include a series-connected capacitive component. It is also found that when the frequency is nigher than 150 kHz, the estimated phase error is not sensitive to the inductive source but sensitive to the capacitive source. Finally, under the conditions of the same measurement accuracies for impedance magnitude, the accuracy of complex impedance based on the HT can be improved about 10 times when compared with the accuracy of estimated parameters based on the impedance magnitude fitting method (IMFM).展开更多
Independent component analysis was applied to analyze the acoustic signals from diesel engine. First the basic prin-ciple of independent component analysis (ICA) was reviewed. Diesel engine acoustic signal was decompo...Independent component analysis was applied to analyze the acoustic signals from diesel engine. First the basic prin-ciple of independent component analysis (ICA) was reviewed. Diesel engine acoustic signal was decomposed into several inde-pendent components (ICs); Fourier transform and continuous wavelet transform (CWT) were applied to analyze the independent components. Different noise sources of the diesel engine were separated, based on the characteristics of different component in time-frequency domain.展开更多
Feedforward active noise control(ANC)system are widely used to reduce the wide-band noise in different application.In feedforward ANC systems,when the noise source is unknown,the misplacement of the reference micropho...Feedforward active noise control(ANC)system are widely used to reduce the wide-band noise in different application.In feedforward ANC systems,when the noise source is unknown,the misplacement of the reference microphone may violate the causality constraint.We present a performance analysis of the feedforward ANC system under a noncausal condition.The ANC system performance degrades when the degree of noncausality increases.This research applies the microphone array technique to feedforward ANC systems to solve the unknown noise source problem.The generalized cross-correlation(GCC)and steering response power(SRP)methods based on microphone array are used to estimate the noise source location.Then,the ANC system selects the proper reference microphone for a noise control algorithm.The simulation and experiment results show that the SRP method can estimate the noise source direction with 84%accuracy.The proposed microphone array integrated ANC system can dramatically improve the system performance.展开更多
Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the ...Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the Schottky barrier diode detector in the terahertz frequency band (90–140GHz). Based on the computed tomography technique, the three-dimensional image of a ceramic sample is reconstructed successfully by stacking the slices at different heights. The imaging results not only indicate the ability of terahertz wave in the non-invasive sensing and non-destructive inspection applications, but also prove the effectiveness and superiority of the uni-traveling-carrier photodiode as a terahertz source in the imaging applications.展开更多
With the development of the dense array,the surface wave velocity and azimuthal anisotropy under the array can be directly obtained by beamforming the noise cross-correlation functions(NCFs). However, the retrieval of...With the development of the dense array,the surface wave velocity and azimuthal anisotropy under the array can be directly obtained by beamforming the noise cross-correlation functions(NCFs). However, the retrieval of the Green’s function by cross-correlating the seismic noise requires that the noise source has a uniform distribution. For the case with uneven noise source, the azimuthal dependence on the sources in the expression for the spatial coherence function, which corresponds to the NCF in the time domain,has the same form as the azimuthal dependence of the surface wave velocity in weakly anisotropic media. Therefore, the uneven noise source will affect the surface wave anisotropy extraction. In this study, three passive seismic methods, i.e.,beamforming, SPAC(spatial autocorrelation), and NCF, are compared to demonstrate that an uneven source distribution and uneven station distribution have equivalent effects on the outcome from each method. A beamforming method is proposed to directly extract the velocity and azimuthal anisotropy of surface waves. The effect of uneven noise source and/or station distribution on estimating the azimuth anisotropy of surface waves was investigated using data from the ChinArray Phase Ⅱ. A method for correcting the apparent anisotropy in beamforming results caused by an uneven station distribution is suggested.展开更多
A schematic to make the spectra of the exterior noise of high speed railway was put forward. The exterior noise spectrum was defined based on the characteristics of the high-speed train exterior noise. Its characteris...A schematic to make the spectra of the exterior noise of high speed railway was put forward. The exterior noise spectrum was defined based on the characteristics of the high-speed train exterior noise. Its characteristics considered here include identifying the exterior main sources and their locations, their frequency components including the Doppler effect due to the noise sources moving at high speed, the sound field intensity around the train in high-speed operation, the sound radiation path out of the train, and the pressure level and frequency components of the noise at the measuring points specified by the International Organization for Standardization(ISO). The characteristics of the high-speed train exterior noise of the high speed railways in operation were introduced. The advanced measuring systems and their principles for clearly indentifying the exterior noise sources were discussed in detail. Based on the concerned noise results measured at sites, a prediction model was developed to calculate the sound level and the characteristics of the exterior noise at any point where it is difficult to measure and to help to make the exterior noise spectrums. This model was also verified with the test results. The verification shows that there is a good agreement between the theoretical and experimental results.展开更多
In order to understand the mechanism by which a pantograph can generate aerodynamic noise and grasp its farfield characteristics,a simplified double-strip pantograph is analyzed numerically.Firstly,the unsteady flow f...In order to understand the mechanism by which a pantograph can generate aerodynamic noise and grasp its farfield characteristics,a simplified double-strip pantograph is analyzed numerically.Firstly,the unsteady flow field around the pantograph is simulated in the frame of a large eddy simulation(LES)technique.Then the location of the main noise source is determined using surface fluctuating pressure data and the vortex structures in the pantograph flow field are analyzed by means of the Q-criterion.Based on this,the relationship between the wake vortex and the intensity of the aerodynamic sound source on the pantograph surface is discussed.Finally,the far-field aerodynamic noise is calculated by means of the Ffowcs Williams-Hawkings(FW-H)equation,and the contribution of each component to total noise and the frequency spectrum characteristics are analyzed.The results show that on the pantograph surface where vortex shedding or interaction with the wake of upstream components occurs,the pressure fluctuation is more intense,resulting in strong dipole sources.The far-field aerodynamic noise energy of the pantograph is mainly concentrated in the frequency band below 1500 Hz.The peaks in the frequency spectrum are mainly generated by the base frame,balance arm and the rear strip,which are also the main contributors to the aerodynamic noise.展开更多
The noise prediction of the turbocharger is studied.The broadband noise source model is employed to predict the near-field noise of the turbocharger.The 3D software Solidworks is adopted to establish the model blades ...The noise prediction of the turbocharger is studied.The broadband noise source model is employed to predict the near-field noise of the turbocharger.The 3D software Solidworks is adopted to establish the model blades and inlet of turbocharger compressor,then this 3D model is introduced into the software CFD to calculate the flow-field under different inlet shapes,different blades shapes and different clearances between casing and impeller.On the base of the above simulation,the broadband noise source model is employed to calculate and analyze the near-field noise.The calculation shows that compressor static pressure values and the sound power values near the impeller outlet are the largest.Through the noise calculation by using broadband noise source model under different inlet shapes and blade shapes,we find that the noise level of the inlet of cylindrical and cone types are smaller.Compared with the current widespread used backward skewed or radial blades,there is little difference of the noise value of the inlet of the forward skewed blades.展开更多
This study focuses on a single-stage axial flow fan, investigating the effect of three kinds of wave leading edge stator blades on its noise reduction. The DDES method and the duct acoustic analogy theory based on the...This study focuses on a single-stage axial flow fan, investigating the effect of three kinds of wave leading edge stator blades on its noise reduction. The DDES method and the duct acoustic analogy theory based on the penetrable data surface were used for noise prediction. The results showed that the three kinds of wave leading edge blades were effective in reducing the rotor-stator interaction tonal noise and also have a certain inhibitory effect on broadband noise. The A10W15 stator blade can effectively reduce broadband noise in the frequency range of 2200 - 4200 Hz. When the amplitude is increased to 20, the noise reduction effect is further enhanced. However, when the amplitude is increased to 30, the broadband noise reduction effect is no longer significant. Further research shows that the wave leading edge stator blades can significantly change the pressure fluctuation distribution on the leading edge and suction surface, which control the modal energy distribution. Finally, this paper analyzed multiple factors affecting the broadband noise reduction, such as the noise source cut-off and cut-on effect and correlation. The purpose of this paper is to explore the laws of the influence of wave leading edge blades on the duct noise of real fan, and to reveal its noise control mechanism. .展开更多
Based on the complexity and dynamic random analysis of machine noise source in mine heading face, this article established the noise pressure mathematical model of noise propagation in mine laneway of different noise ...Based on the complexity and dynamic random analysis of machine noise source in mine heading face, this article established the noise pressure mathematical model of noise propagation in mine laneway of different noise sources, carried out noise propagation numerical simulation in long space, and revealed noise propagation law of more radiated noise sources in the mine roadway. The results show that, under conditions that the total noise power is always the same, regardless of point source, surface noise source, or body noise source, the corresponding noise attenuation trend along the mine laneway and attenuation curve shape are basically the same. However, the attenuation velocity corresponding to complex stereo noise source is slower than single point source and the noise pressure value is higher than the single point source. The actual noise of measured values is close to the theoretical value or, say, there is little error for complex stereo noise source, whereas the error to single point source and surface noise is higher, respectively.展开更多
The influences of the four different surface dipole sources in a centrifugal pump on the acoustic calculating accuracy are studied in this paper, by using the CFD combined with the Lighthill acoustic analogy methods. ...The influences of the four different surface dipole sources in a centrifugal pump on the acoustic calculating accuracy are studied in this paper, by using the CFD combined with the Lighthill acoustic analogy methods. Firstly, the unsteady flow in the pump is solved based on the large eddy simulation method and the pressure pulsations on the four different surfaces are obtained. The four surfaces include the volute surface, the discharge pipe surface, the inner surface of the pump cavity, and the interfaces between the impeller and the stationary parts as well as the outer surface of the impeller. Then, the software Sysnoise is employed to interpolate the pressure fluctuations onto the corresponding surfaces of the acoustic model. The Fast Fourier Transform with a Hanning window is used to analyze the pressure fluctuations and transform them into the surface dipole sources. The direct boundary element method is applied to calculate the noise radiated from the dipole sources. And the predicted sound pressure level is compared with the experimental data. The results show that the pressure fluctuations on the discharge pipe surface and the outer surface of the impeller have little effect on the acoustic simulation results. The pressure pulsations on the inner surface of the pump cavity play an important role in the internal flow and the acoustic simulation. The acoustic calculating error can be reduced by about 7% through considering the effect of the pump cavity. The sound pressure distributions show that the sound pressure level increases with the growing flow rate, with the largest magnitude at the tongue zone.展开更多
This study investigates the underwater radiated noise(URN)of a manned submersible support mother ship.To this end,a detailed finite element model of the hull and outflow field is established,and the vibration wet mode...This study investigates the underwater radiated noise(URN)of a manned submersible support mother ship.To this end,a detailed finite element model of the hull and outflow field is established,and the vibration wet mode of the scientific research ship is calculated.A combination of finite element and boundary element methods is used to analyze the spectral features of ship low-frequency URN.The URN source is comprehensively analyzed,the vibration energy is considered the basic parameter to describe the vibration,and the medium-and high-frequency URN of the ship are calculated using the statistical energy analysis.To obtain the full frequency-band URN of the ship,the risk position of exceeding the standard is determined,and the contribution of each main noise source in the ship to the URN is analyzed.The URN level of the ship is comprehensively measured in the free navigation state.The accuracy of the URN control evaluation model,and the method of the ship are verified.The data support for the ship to apply for the classification society certificate provides a scheme reference for the URN control of other scientific research ship in the future.展开更多
An signal noise ratio( SNR) adaptive sorting algorithm using the time-frequency( TF)sparsity of frequency-hopping( FH) signal is proposed in this paper. Firstly,the Gabor transformation is used as TF transformat...An signal noise ratio( SNR) adaptive sorting algorithm using the time-frequency( TF)sparsity of frequency-hopping( FH) signal is proposed in this paper. Firstly,the Gabor transformation is used as TF transformation in the system and a sorting model is established under undetermined condition; then the SNR adaptive pivot threshold setting method is used to find the TF single source. The mixed matrix is estimated according to the TF matrix of single source. Lastly,signal sorting is realized through improved subspace projection combined with relative power deviation of source. Theoretical analysis and simulation results showthat this algorithm has good effectiveness and performance.展开更多
A moderate Reynolds number, and high subsonic turbulent round jet is investigated by large eddy simulation. The detailed results (e.g. mean flow properties, turbulence intensities, etc.) are validated against the ex...A moderate Reynolds number, and high subsonic turbulent round jet is investigated by large eddy simulation. The detailed results (e.g. mean flow properties, turbulence intensities, etc.) are validated against the experimental data, and special attention is paid to study motions of coherent structures and their contributions to far-field noise. Eulerian methods (e.g. Q-criteria and A2 criteria) are utilized for visualizing coherent structures directly for instantaneous flow fields, and Lagrangian coherent structures accounting for integral effect are shown via calculating fields of finite time Lyapunov exponents based on bidimensional velocity fields. All visualizations demonstrate that intrusion of three-dimensional vortical structures into jet core occurs intermittently at the end of the potential core, resulting from the breakdown of helical vortex rings in the shear layer. Intermittencies in the shear layer and on the centerline are studied quantitatively, and distinctively different distributions of probability density function are observed. Moreover, the physical sound sources are obtained through a filtering operation of defined sources in Lighthill's analogy, and their distributions verify that intrusion of vortical structures into the core region serves as important sound sources, in particular for noise at aft angles. The facts that intermittent behaviors are caused by motions of coherent structures and correlated with noise generation imply that to establish reasonable sound sources in active noise production region based on intermittent coherent structures is one of the key issues for far-field noise prediction.展开更多
基金supported by programfor the Top Young Academic Leaders of Higher Learning Institutions of Shanxi(2009)Natural Science Foundation of Shanxi Province,China(No.2010011031-2)
文摘In order to reduce the noise and vibration of the diesel engine,it is crucial to exactly identify the engine noise source character.Based on "two-microphone" method,the sound intensity measurement of a vehicle four-stroke diesel engine was carried out in a hemi-anechoic chamber.Then the sound intensity contour maps were obtained from the measurement results and the main noise components of different frequencies on all the measurement surfaces were picked out to construct contour maps.By analysizing the relationship between the characteristics of contour maps and the space distribution of the engine compartment,the major sources of the exterior radiation noise of the diesel engine were identified.The results provided a creditable basis for improving the noise performance of the engine in the next phase.
基金This work is supported by the National Key Research and Development Program of China(2020YFA0710902)Sichuan Science and Technology Program(2021YFG0214,2019YJ0227)+1 种基金Fundamental Research Funds for the Central Universities(2682021ZTPY124)State Key Laboratory of Traction Power(2019TPL_T02).
文摘The aerodynamic noise of high-speed trains passing through a tunnel has gradually become an important issue.Numerical approaches for predicting the aerodynamic noise sources of high-speed trains running in tunnels are the key to alleviating aerodynamic noise issues.In this paper,two typical numerical methods are used to calculate the aerodynamic noise of high-speed trains.These are the static method combined with non-reflective boundary conditions and the dynamic mesh method combined with adaptive mesh.The fluctuating pressure,flow field and aerodynamic noise source are numerically simulated using the abovemethods.The results showthat the fluctuating pressure,flow field structure and noise source characteristics obtained using different methods,are basically consistent.Compared to the dynamic mesh method,the pressure,vortex size and noise source radiation intensity,obtained by the static method,are larger.The differences are in the tail car and its wake.The two calculation methods show that the spectral characteristics of the surface noise source are consistent.The maximum difference in the sound pressure level is 1.9 dBA.The static method is more efficient and more suitable for engineering applications.
基金Supported by the National Natural Science Fundation of China(50974061)the Natural Science Fundation of Hebei Province(E2009001420)
文摘In order to determine the characteristics of noise source accurately, the noisedistribution at different frequencies was determined by taking the differences into accountbetween aerodynamic noises, mechanical noise, electrical noise in terms of in frequencyand intensity.Designed a least squares wavelet with high precision and special effects forstrong interference zone (multi-source noise), which is applicable to strong noise analysisproduced by underground mine, and obtained distribution of noise in different frequencyand achieves good results.According to the results of decomposition, the characteristicsof noise sources production can be more accurately determined, which lays a good foundationfor the follow-up focused and targeted noise control, and provides a new methodthat is greatly applicable for testing and analyzing noise control.
文摘A mathematical model of deterndulng sound power by using the scanning method is developed. It is assumed that the scanning speed is constant and the noise source is stationary The accuracy of estimating sound power along some simple paths on the surfaces such as rectangle, disc and hemisphere is analyzed. It is argued that the accuracy of estimating sound power is strongly depended on a suitable selection of scan path. The accurate estdriation of sound power can be made by scanning along some simple paths.
基金supported by the National Natural Science Foundation of China(61501142)the China Postdoctoral Science Foundation(2015M571414)+3 种基金the Fundamental Research Funds for the Central Universities(HIT.NSRIF.2016102)Shandong Provincial Natural Science Foundation(ZR2014FQ003)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(HIT.NSRIF 2013130HIT(WH)XBQD 201022)
文摘In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applications, especially in passive radar systems. In this paper, we propose a joint DOA and polarization estimation method for unequal power sources based on the reconstructed noise subspace. The invariance property of noise subspace(IPNS) to power of sources has been proved an effective method to estimate DOA of unequal power sources. We develop the IPNS method for joint DOA and polarization estimation based on a dual polarized array. Moreover, we propose an improved IPNS method based on the reconstructed noise subspace, which has higher resolution probability than the IPNS method. It is theoretically proved that the IPNS to power of sources is still valid when the eigenvalues of the noise subspace are changed artificially. Simulation results show that the resolution probability of the proposed method is enhanced compared with the methods based on the IPNS and the polarimetric multiple signal classification(MUSIC) method. Meanwhile, the proposed method has approximately the same estimation accuracy as the IPNS method for the weak source.
文摘Engine noise source identification is essential for making noise reduction strategies.Predominant noise sources of engines are normally identified as some cover components such as oil pan, valve cover and front gear cover etc. The radiated noise sources of a 6-cylinder construction diesel engine are identified with two methods-lead covering technique and surface vibration technique,and the ranking of the major cover on the basis of acoustic power is presented in this paper. Firstly the sound power level of these cover components and their contributions to the total acoustic power are determined with lead covering method under hemi-anechoic condition. Then the vibration characteristics of these components are investigated. The sound power level of various components is predicted via the mean square area average vibration. Both results basically agree well and verify the effectiveness of both techniques in engineering field.
基金The Natural Science Foundation of Jiangsu Province(No.BK2008429)Open Research Foundation of State Key Laboratory of Millimeter Waves of Southeast University(No.K200603)+1 种基金China Postdoctoral Science Foundation(No.20080431126)Jiangsu Postdoctoral Science Foundation(No.2007-337)
文摘A new approach to conductive electromagnetic interference (EMI) noise source modeling, i. e. the source internal impedance extraction, is presented. First, the impedance magnitude is achieved through an exciting probe and a detecting probe, or through calculations based on insertion loss measurement results when inserting a series nigh-value known impedance or a shunt low-value known impedance in the circuit. Then the impedance phase is extracted by the Hilbert transform (HT) of the logarithm of the obtained impedance magnitude. Performance studies show that the estimated phase error can increase greatly at a zero frequency in the Hilbert transform because of the existence of a singular point, and this effect can be eliminated by introducing a zero-point when the noise source does not include a series-connected capacitive component. It is also found that when the frequency is nigher than 150 kHz, the estimated phase error is not sensitive to the inductive source but sensitive to the capacitive source. Finally, under the conditions of the same measurement accuracies for impedance magnitude, the accuracy of complex impedance based on the HT can be improved about 10 times when compared with the accuracy of estimated parameters based on the impedance magnitude fitting method (IMFM).
基金Project (No. 50575203) supported by the National Natural ScienceFoundation of China
文摘Independent component analysis was applied to analyze the acoustic signals from diesel engine. First the basic prin-ciple of independent component analysis (ICA) was reviewed. Diesel engine acoustic signal was decomposed into several inde-pendent components (ICs); Fourier transform and continuous wavelet transform (CWT) were applied to analyze the independent components. Different noise sources of the diesel engine were separated, based on the characteristics of different component in time-frequency domain.
文摘Feedforward active noise control(ANC)system are widely used to reduce the wide-band noise in different application.In feedforward ANC systems,when the noise source is unknown,the misplacement of the reference microphone may violate the causality constraint.We present a performance analysis of the feedforward ANC system under a noncausal condition.The ANC system performance degrades when the degree of noncausality increases.This research applies the microphone array technique to feedforward ANC systems to solve the unknown noise source problem.The generalized cross-correlation(GCC)and steering response power(SRP)methods based on microphone array are used to estimate the noise source location.Then,the ANC system selects the proper reference microphone for a noise control algorithm.The simulation and experiment results show that the SRP method can estimate the noise source direction with 84%accuracy.The proposed microphone array integrated ANC system can dramatically improve the system performance.
基金Supported by the Hundred Talents Program of Chinese Academy of Sciencesthe National Basic Research Program of China under Grant No 2014CB339803+2 种基金the Major National Development Project of Scientific Instrument and Equipment under Grant No2011YQ150021the National Natural Science Foundation of China under Grant Nos 61575214,61574155,61404149 and 61404150the Shanghai Municipal Commission of Science and Technology under Grant Nos 14530711300,15560722000 and 15ZR1447500
文摘Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the Schottky barrier diode detector in the terahertz frequency band (90–140GHz). Based on the computed tomography technique, the three-dimensional image of a ceramic sample is reconstructed successfully by stacking the slices at different heights. The imaging results not only indicate the ability of terahertz wave in the non-invasive sensing and non-destructive inspection applications, but also prove the effectiveness and superiority of the uni-traveling-carrier photodiode as a terahertz source in the imaging applications.
基金supported by the National Key R&D Program of China (No. 2017YFC1500200)National Natural Science Foundation of China (Nos. 41674062 and 41174041)China National Special Fund for Earthquake Scientific Research of Public Interest (No. 201308011)
文摘With the development of the dense array,the surface wave velocity and azimuthal anisotropy under the array can be directly obtained by beamforming the noise cross-correlation functions(NCFs). However, the retrieval of the Green’s function by cross-correlating the seismic noise requires that the noise source has a uniform distribution. For the case with uneven noise source, the azimuthal dependence on the sources in the expression for the spatial coherence function, which corresponds to the NCF in the time domain,has the same form as the azimuthal dependence of the surface wave velocity in weakly anisotropic media. Therefore, the uneven noise source will affect the surface wave anisotropy extraction. In this study, three passive seismic methods, i.e.,beamforming, SPAC(spatial autocorrelation), and NCF, are compared to demonstrate that an uneven source distribution and uneven station distribution have equivalent effects on the outcome from each method. A beamforming method is proposed to directly extract the velocity and azimuthal anisotropy of surface waves. The effect of uneven noise source and/or station distribution on estimating the azimuth anisotropy of surface waves was investigated using data from the ChinArray Phase Ⅱ. A method for correcting the apparent anisotropy in beamforming results caused by an uneven station distribution is suggested.
基金Project(2682013BR009)supported by the Fundamental Research Funds of the Central Universities,ChinaProject(2011AA11A103-2-2)the National High-Technology Research and Development Program of China
文摘A schematic to make the spectra of the exterior noise of high speed railway was put forward. The exterior noise spectrum was defined based on the characteristics of the high-speed train exterior noise. Its characteristics considered here include identifying the exterior main sources and their locations, their frequency components including the Doppler effect due to the noise sources moving at high speed, the sound field intensity around the train in high-speed operation, the sound radiation path out of the train, and the pressure level and frequency components of the noise at the measuring points specified by the International Organization for Standardization(ISO). The characteristics of the high-speed train exterior noise of the high speed railways in operation were introduced. The advanced measuring systems and their principles for clearly indentifying the exterior noise sources were discussed in detail. Based on the concerned noise results measured at sites, a prediction model was developed to calculate the sound level and the characteristics of the exterior noise at any point where it is difficult to measure and to help to make the exterior noise spectrums. This model was also verified with the test results. The verification shows that there is a good agreement between the theoretical and experimental results.
基金This work is funded by National key R&D Program China(2016YFE0205200)National Natural Foundation of China(U1834201).
文摘In order to understand the mechanism by which a pantograph can generate aerodynamic noise and grasp its farfield characteristics,a simplified double-strip pantograph is analyzed numerically.Firstly,the unsteady flow field around the pantograph is simulated in the frame of a large eddy simulation(LES)technique.Then the location of the main noise source is determined using surface fluctuating pressure data and the vortex structures in the pantograph flow field are analyzed by means of the Q-criterion.Based on this,the relationship between the wake vortex and the intensity of the aerodynamic sound source on the pantograph surface is discussed.Finally,the far-field aerodynamic noise is calculated by means of the Ffowcs Williams-Hawkings(FW-H)equation,and the contribution of each component to total noise and the frequency spectrum characteristics are analyzed.The results show that on the pantograph surface where vortex shedding or interaction with the wake of upstream components occurs,the pressure fluctuation is more intense,resulting in strong dipole sources.The far-field aerodynamic noise energy of the pantograph is mainly concentrated in the frequency band below 1500 Hz.The peaks in the frequency spectrum are mainly generated by the base frame,balance arm and the rear strip,which are also the main contributors to the aerodynamic noise.
基金Sponsored by the National Natural Science Foundation of China (50875022)Research Foundation of Beijing Institute of Technology(20070342012)
文摘The noise prediction of the turbocharger is studied.The broadband noise source model is employed to predict the near-field noise of the turbocharger.The 3D software Solidworks is adopted to establish the model blades and inlet of turbocharger compressor,then this 3D model is introduced into the software CFD to calculate the flow-field under different inlet shapes,different blades shapes and different clearances between casing and impeller.On the base of the above simulation,the broadband noise source model is employed to calculate and analyze the near-field noise.The calculation shows that compressor static pressure values and the sound power values near the impeller outlet are the largest.Through the noise calculation by using broadband noise source model under different inlet shapes and blade shapes,we find that the noise level of the inlet of cylindrical and cone types are smaller.Compared with the current widespread used backward skewed or radial blades,there is little difference of the noise value of the inlet of the forward skewed blades.
文摘This study focuses on a single-stage axial flow fan, investigating the effect of three kinds of wave leading edge stator blades on its noise reduction. The DDES method and the duct acoustic analogy theory based on the penetrable data surface were used for noise prediction. The results showed that the three kinds of wave leading edge blades were effective in reducing the rotor-stator interaction tonal noise and also have a certain inhibitory effect on broadband noise. The A10W15 stator blade can effectively reduce broadband noise in the frequency range of 2200 - 4200 Hz. When the amplitude is increased to 20, the noise reduction effect is further enhanced. However, when the amplitude is increased to 30, the broadband noise reduction effect is no longer significant. Further research shows that the wave leading edge stator blades can significantly change the pressure fluctuation distribution on the leading edge and suction surface, which control the modal energy distribution. Finally, this paper analyzed multiple factors affecting the broadband noise reduction, such as the noise source cut-off and cut-on effect and correlation. The purpose of this paper is to explore the laws of the influence of wave leading edge blades on the duct noise of real fan, and to reveal its noise control mechanism. .
基金Supported by the National Natural Science Foundation of China (50975087) the Scientific Research Starting Foundation for Returned Overseas Chinese Scholars, Ministry of Education, China ([2009] 1590) the Key Research Project of Hunan Province Office of Education (09A026)
文摘Based on the complexity and dynamic random analysis of machine noise source in mine heading face, this article established the noise pressure mathematical model of noise propagation in mine laneway of different noise sources, carried out noise propagation numerical simulation in long space, and revealed noise propagation law of more radiated noise sources in the mine roadway. The results show that, under conditions that the total noise power is always the same, regardless of point source, surface noise source, or body noise source, the corresponding noise attenuation trend along the mine laneway and attenuation curve shape are basically the same. However, the attenuation velocity corresponding to complex stereo noise source is slower than single point source and the noise pressure value is higher than the single point source. The actual noise of measured values is close to the theoretical value or, say, there is little error for complex stereo noise source, whereas the error to single point source and surface noise is higher, respectively.
基金supported by the National Natural Science Foun-dation of China(Grant Nos.51309120,51509109)the Natio-nal Key Technology Support Program of China(Grant No.2013BAF01B02)the Jiangsu Province Science and Technology Support Program of China(Grant Nos.BA2013127,E2014879 and BA2015169)
文摘The influences of the four different surface dipole sources in a centrifugal pump on the acoustic calculating accuracy are studied in this paper, by using the CFD combined with the Lighthill acoustic analogy methods. Firstly, the unsteady flow in the pump is solved based on the large eddy simulation method and the pressure pulsations on the four different surfaces are obtained. The four surfaces include the volute surface, the discharge pipe surface, the inner surface of the pump cavity, and the interfaces between the impeller and the stationary parts as well as the outer surface of the impeller. Then, the software Sysnoise is employed to interpolate the pressure fluctuations onto the corresponding surfaces of the acoustic model. The Fast Fourier Transform with a Hanning window is used to analyze the pressure fluctuations and transform them into the surface dipole sources. The direct boundary element method is applied to calculate the noise radiated from the dipole sources. And the predicted sound pressure level is compared with the experimental data. The results show that the pressure fluctuations on the discharge pipe surface and the outer surface of the impeller have little effect on the acoustic simulation results. The pressure pulsations on the inner surface of the pump cavity play an important role in the internal flow and the acoustic simulation. The acoustic calculating error can be reduced by about 7% through considering the effect of the pump cavity. The sound pressure distributions show that the sound pressure level increases with the growing flow rate, with the largest magnitude at the tongue zone.
基金The National Key R&D Plan(Grant No.2016YFC03000704)National Key R&D Plan(Grant No.2018YFC03009202).
文摘This study investigates the underwater radiated noise(URN)of a manned submersible support mother ship.To this end,a detailed finite element model of the hull and outflow field is established,and the vibration wet mode of the scientific research ship is calculated.A combination of finite element and boundary element methods is used to analyze the spectral features of ship low-frequency URN.The URN source is comprehensively analyzed,the vibration energy is considered the basic parameter to describe the vibration,and the medium-and high-frequency URN of the ship are calculated using the statistical energy analysis.To obtain the full frequency-band URN of the ship,the risk position of exceeding the standard is determined,and the contribution of each main noise source in the ship to the URN is analyzed.The URN level of the ship is comprehensively measured in the free navigation state.The accuracy of the URN control evaluation model,and the method of the ship are verified.The data support for the ship to apply for the classification society certificate provides a scheme reference for the URN control of other scientific research ship in the future.
基金Supported by the National Natural Science Foundation of China(64601500)
文摘An signal noise ratio( SNR) adaptive sorting algorithm using the time-frequency( TF)sparsity of frequency-hopping( FH) signal is proposed in this paper. Firstly,the Gabor transformation is used as TF transformation in the system and a sorting model is established under undetermined condition; then the SNR adaptive pivot threshold setting method is used to find the TF single source. The mixed matrix is estimated according to the TF matrix of single source. Lastly,signal sorting is realized through improved subspace projection combined with relative power deviation of source. Theoretical analysis and simulation results showthat this algorithm has good effectiveness and performance.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11072238 and 11232011)the 111 Project of China (Grant No. B07033)
文摘A moderate Reynolds number, and high subsonic turbulent round jet is investigated by large eddy simulation. The detailed results (e.g. mean flow properties, turbulence intensities, etc.) are validated against the experimental data, and special attention is paid to study motions of coherent structures and their contributions to far-field noise. Eulerian methods (e.g. Q-criteria and A2 criteria) are utilized for visualizing coherent structures directly for instantaneous flow fields, and Lagrangian coherent structures accounting for integral effect are shown via calculating fields of finite time Lyapunov exponents based on bidimensional velocity fields. All visualizations demonstrate that intrusion of three-dimensional vortical structures into jet core occurs intermittently at the end of the potential core, resulting from the breakdown of helical vortex rings in the shear layer. Intermittencies in the shear layer and on the centerline are studied quantitatively, and distinctively different distributions of probability density function are observed. Moreover, the physical sound sources are obtained through a filtering operation of defined sources in Lighthill's analogy, and their distributions verify that intrusion of vortical structures into the core region serves as important sound sources, in particular for noise at aft angles. The facts that intermittent behaviors are caused by motions of coherent structures and correlated with noise generation imply that to establish reasonable sound sources in active noise production region based on intermittent coherent structures is one of the key issues for far-field noise prediction.