A mathematical model of deterndulng sound power by using the scanning method is developed. It is assumed that the scanning speed is constant and the noise source is stationary The accuracy of estimating sound power al...A mathematical model of deterndulng sound power by using the scanning method is developed. It is assumed that the scanning speed is constant and the noise source is stationary The accuracy of estimating sound power along some simple paths on the surfaces such as rectangle, disc and hemisphere is analyzed. It is argued that the accuracy of estimating sound power is strongly depended on a suitable selection of scan path. The accurate estdriation of sound power can be made by scanning along some simple paths.展开更多
Heat dissipation is one of the most serious problems in modern integrated electronics with the continuously decreasing devices size. Large portion of the consumed power is inevitably dissipated inthe form of waste hea...Heat dissipation is one of the most serious problems in modern integrated electronics with the continuously decreasing devices size. Large portion of the consumed power is inevitably dissipated inthe form of waste heat which not only restricts the device energy-efficiency performance itself, butalso leads to severe environment problems and energy crisis. Thermoelectric Seebeck effect is a greenenergy-recycling method, while thermoelectric Peltier effect can be employed for heat management byactively cooling overheated devices, where passive cooling by heat conduction is not sufficiently enough.However, the technological applications of thermoelectricity are limited so far by their very low conversion efficiencies and lack of deep understanding of thermoelectricity in microscopic levels. Probingand managing the thermoelectricity is therefore fundamentally important particularly in nanoscale. Inthis short review, we will first briefly introduce the microscopic techniques for studying nanoscale thermoelectricity, focusing mainly on scanning thermal microscopy (SThM). SThM is a powerful tool formapping the lattice heat with nanometer spatial resolution and hence detecting the nanoscale thermaltransport and dissipation processes. Then we will review recent experiments utilizing these techniques to investigate thermoelectricity in various nanomaterial systems including both (two-material)heterojunctions and (single-material) homojunctions with tailored Seebeck coefficients, and also spinSeebeck and Peltier effects in magnetic materials. Next, we will provide a perspective on the promisingapplications of our recently developed Scanning Noise Microscope (SNoiM) for directly probing thenon-equilibrium transporting hot charges (instead of lattice heat) in thermoelectric devices. SNoiMtogether with SThM are expected to be able to provide more complete and comprehensive understanding to the microscopic mechanisms in thermoelectrics. Finally, we make a conclusion and outlook onthe future development of microscopic studies in thermoelectrics.展开更多
文摘A mathematical model of deterndulng sound power by using the scanning method is developed. It is assumed that the scanning speed is constant and the noise source is stationary The accuracy of estimating sound power along some simple paths on the surfaces such as rectangle, disc and hemisphere is analyzed. It is argued that the accuracy of estimating sound power is strongly depended on a suitable selection of scan path. The accurate estdriation of sound power can be made by scanning along some simple paths.
基金support from Shanghai Science and Technology Committee under grant Nos.20JC1414700,18JC1420402,18JC1410300the National Natural Science Foundation of China(NSFC)under grant Nos.11991060/11674070/11634012the National Key Research Program of China under grant No.2016YFA0302000.
文摘Heat dissipation is one of the most serious problems in modern integrated electronics with the continuously decreasing devices size. Large portion of the consumed power is inevitably dissipated inthe form of waste heat which not only restricts the device energy-efficiency performance itself, butalso leads to severe environment problems and energy crisis. Thermoelectric Seebeck effect is a greenenergy-recycling method, while thermoelectric Peltier effect can be employed for heat management byactively cooling overheated devices, where passive cooling by heat conduction is not sufficiently enough.However, the technological applications of thermoelectricity are limited so far by their very low conversion efficiencies and lack of deep understanding of thermoelectricity in microscopic levels. Probingand managing the thermoelectricity is therefore fundamentally important particularly in nanoscale. Inthis short review, we will first briefly introduce the microscopic techniques for studying nanoscale thermoelectricity, focusing mainly on scanning thermal microscopy (SThM). SThM is a powerful tool formapping the lattice heat with nanometer spatial resolution and hence detecting the nanoscale thermaltransport and dissipation processes. Then we will review recent experiments utilizing these techniques to investigate thermoelectricity in various nanomaterial systems including both (two-material)heterojunctions and (single-material) homojunctions with tailored Seebeck coefficients, and also spinSeebeck and Peltier effects in magnetic materials. Next, we will provide a perspective on the promisingapplications of our recently developed Scanning Noise Microscope (SNoiM) for directly probing thenon-equilibrium transporting hot charges (instead of lattice heat) in thermoelectric devices. SNoiMtogether with SThM are expected to be able to provide more complete and comprehensive understanding to the microscopic mechanisms in thermoelectrics. Finally, we make a conclusion and outlook onthe future development of microscopic studies in thermoelectrics.