In this paper, we study the existence of the transcendental meromorphic solution of the delay differential equations , where a(z) is a rational function, and are polynomials in w(z) with rational c...In this paper, we study the existence of the transcendental meromorphic solution of the delay differential equations , where a(z) is a rational function, and are polynomials in w(z) with rational coefficients, k is a positive integer. Under the assumption when above equations own transcendental meromorphic solutions with minimal hyper-type, we derive the concrete conditions on the degree of the right side of them. Specially, when w(z)=0 is a root of , its multiplicity is at most k. Some examples are given here to illustrate that our results are accurate.展开更多
This paper describes analytical and numerical methods to analyze the steady state periodic response of an oscillator with symmetric elastic and inertia nonlinearity. A new implementation of the homotopy perturbation m...This paper describes analytical and numerical methods to analyze the steady state periodic response of an oscillator with symmetric elastic and inertia nonlinearity. A new implementation of the homotopy perturbation method (HPM) and an ancient Chinese method called the max-rain approach are presented to obtain an approximate solution. The major concern is to assess the accuracy of these approximate methods in predicting the system response within a certain range of system parameters by examining their ability to establish an actual (numerical) solution. Therefore, the analytical results are compared with the numerical results to illustrate the effectiveness and convenience of the proposed methods.展开更多
We present a numerical investigation of the propagation and the switching of ultra-short pulses (100 fs) in a two-core nonlinear coupler of photonic crystal fibers constructed with periodically modulated the non-linea...We present a numerical investigation of the propagation and the switching of ultra-short pulses (100 fs) in a two-core nonlinear coupler of photonic crystal fibers constructed with periodically modulated the non-linearity fiber (PMNL-PFC). Our simulations are taking into account different amplitude and frequency modulations of the PMNL-PFC. A coupler for coupling whose length is Lc = 1.8 cm, the transmission characteristics, the compression factor, the crosstalk (Xtalk) and extinction ratio (Xratio) levels of the first order solitons were studied for low to high pump energies considering 2Lc. By an analysis on the reference channel (channel 2), it is observed that at low modulation frequencies an increase occurs in the switching power increasing transmission efficiency. For high modulation frequencies, the transmitted energy efficiency loses. The switching pulses are stronger for low frequency and high amplitude modulation. The Xtalk is a function of the measurement made on the secondary channel (channel 1). It was observed that this unwanted high-frequency energy increases to lessen the measure of the amplitude modulation. In summary, we have demonstrated that introduction of a non-linearity profile takes the periodically modulated PMNL-PFC to strong variations at transmission efficiency, Xtalk, Xratio a function of frequency and modulation amplitude and the input power.展开更多
CeO2/TiO2 composite nanoparticles with different Ce/Ti molar ratios have been successfully synthesized via sol-gel method. It was found that the band gap of the nanocomposite is tunable by varying Ce/Ti content. The n...CeO2/TiO2 composite nanoparticles with different Ce/Ti molar ratios have been successfully synthesized via sol-gel method. It was found that the band gap of the nanocomposite is tunable by varying Ce/Ti content. The nonlinear response of the sample was studied by using the nanosecond laser pulses from a Q switched Nd:Yag laser employing the Z-scan method. Open aperture Z-scan experiment revealed that with the increase in the CeO2 amount in the nanocomposite, the non-linearity of the composite increases, and it was assumed that this could be due to the modification of TiO2 dipole symmetry by the addition of CeO2. Closed aperture Z-scan experiment showed that when the CeO2 amount increases, positive nonlinear refraction decreases, and this could be attributed to the increase in the two photon absorption which subsequently suppresses the nonlinear refraction.展开更多
The present paper tries to discuss the quantity instability in the non-linearity dynamics equations without the limit of the stability in the dynamics equations. The result shows that the quantity instability of non-l...The present paper tries to discuss the quantity instability in the non-linearity dynamics equations without the limit of the stability in the dynamics equations. The result shows that the quantity instability of non-linearity can be deducted to the turning transformation in the curvature space. “The dynamics of varying acceleration" is not the issue of inertia system in science of the time. The particularity as information cannot limit the quantity instability with the quantity stability in inertia system. The particular information does have the significant meaning related to the turning transformation in evolution, in which each problem of non-linearity or matter evolution can go out of the inertia system by means of “kill three birds with one stone".展开更多
In order to solve serious urban transport problems, according to the proved chaotic characteristic of traffic flow, a non linear chaotic model to analyze the time series of traffic flow is proposed. This model recons...In order to solve serious urban transport problems, according to the proved chaotic characteristic of traffic flow, a non linear chaotic model to analyze the time series of traffic flow is proposed. This model reconstructs the time series of traffic flow in the phase space firstly, and the correlative information in the traffic flow is extracted richly, on the basis of it, a predicted equation for the reconstructed information is established by using chaotic theory, and for the purpose of obtaining the optimal predicted results, recognition and optimization to the model parameters are done by using genetic algorithm. Practical prediction research of urban traffic flow shows that this model has famous predicted precision, and it can provide exact reference for urban traffic programming and control.展开更多
Many simple nonlinear main journal bearing models have been studied theoretically, but the connection to existing engineering system has not been equally investigated. The consideration of the characteristics of engin...Many simple nonlinear main journal bearing models have been studied theoretically, but the connection to existing engineering system has not been equally investigated. The consideration of the characteristics of engine main journal bearings may provide a prediction of the bearing load and lubrication. Due to the strong non-linear features in bearing lubrication procedure, it is difficult to predict those characteristics. A non-linear dynamic model is described for analyzing the characteristics of engine main journal bearings. Components such as crankshaft, main journals and con rods are found by applying the finite element method. Non-linear spring/dampers are introduced to imitate the constraint and supporting functions provided by the main bearing and oil film. The engine gas pressure is imposed as excitation on the model via the engine piston, con rod, etc. The bearing reaction force is calculated over one engine cycle, and meanwhile, the oil film thickness and pressure distribution are obtained based on Reynolds differential equation. It can be found that the maximum bearing reaction force always occurs when the maximum cylinder pressure arises in the cylinder adjacent to that bearing. The simulated minimum oil film thickness, which is 3 μm, demonstrates the reliability of the main journal bearings. This non-linear dynamic analysis may save computing efforts of engine main bearing design and also is of good precision and close connection to actual engine main journal bearing conditions.展开更多
The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is...The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is derived from the dynamical, constitutive equations and geometrical relations. By referring to the quasi-static stretch assumption, the partial-differential non-linearity is reduced to an integro-partial-differential one. The method of multiple scales is directly applied to the governing equations with the two types of non-linearity, respectively. The amplitude of near- and exact-resonant steady state is analyzed by use of the solvability condition of eliminating secular terms. Numerical results are presented to show the contributions of foundation vibration amplitude, viscoelastic damping, and nonlinearity to the response amplitude for the first and the second mode.展开更多
In this paper the authors study a class of non-linear singular partial differential equation in complex domain C-t x C-x(n). Under certain assumptions, they prove the existence and uniqueness of holomorphic solution n...In this paper the authors study a class of non-linear singular partial differential equation in complex domain C-t x C-x(n). Under certain assumptions, they prove the existence and uniqueness of holomorphic solution near origin of C-t x C-x(n).展开更多
Because of the effect of unbalance excitation and nonlinear magnetic force, the large vibration of the rotor supported by active magnetic bearing(AMB) will go beyond the radial gap of the bearing, even causing mecha...Because of the effect of unbalance excitation and nonlinear magnetic force, the large vibration of the rotor supported by active magnetic bearing(AMB) will go beyond the radial gap of the bearing, even causing mechanical touch-rubbing when the system works at an operational speed closer to the critical speed. In order to investigate this problem, the linear model and nonlinear model of the single mass symmetric rigid rotor system supported by AMB are established respectively and the corresponding transfer functions of close-loop system are given. To pass through the numerical calculation by using MATLAB/Simulink, the effect of both the unbalance response and threshold speed of touch-rubbing of the system subjected to nonlinear magnetic forces and nonlinear output current of power amplifier are studied. Furthermore, threshold speed of touch-rubbing of the rotor-bearing system is defined and the results of numerical simulation are presented. Finally, based on above studies, two methods of increasing the touch-rubbing threshold speed are discussed.展开更多
In this work, the transient free surface of con- tainer filling with non-linear constitutive equation's fluids is numerically investigated by the smoothed particle hydrody- namics (SPH) method. Specifically, the fi...In this work, the transient free surface of con- tainer filling with non-linear constitutive equation's fluids is numerically investigated by the smoothed particle hydrody- namics (SPH) method. Specifically, the filling process of a square container is considered for non-linear polymer fluids based on the Cross model. The validity of the presented SPH is first verified by solving the Newtonian fluid and Oldroyd- B fluid jet. Various phenomena in the filling process are shown, including the jet buckling, jet thinning, splashing or spluttering, steady filling. Moreover, a new phenomenon of vortex whirling is more evidently observed for the Cross model fluid compared with the Newtonian fluid case.展开更多
Damage-modified nonlinear viscoelastic constitutive equation and failure criterion are introduced and the three-dimensional incremental forms are deduced based on the updated Lagrangian approach. A simple tensile test...Damage-modified nonlinear viscoelastic constitutive equation and failure criterion are introduced and the three-dimensional incremental forms are deduced based on the updated Lagrangian approach. A simple tensile test model and a split Hopkinson pressure bar model are built to verify the accuracy of the subroutine implemented within the non-linear finite element program LS-DYNA. A numerical model of bird strike on windshield is established to study the responses of windshield under three different bird velocities at three sites. The bird is represented by a cylinder with a hemisphere at each end and the contact-impact coupling algorithm is used in this study. It is found that the implemented subroutine can properly describe the mechanical behavior of polymethyl methaerylate under low and high strain rates and large deformation, and can be used validly.展开更多
In this paper, the characteristics of different forms of mild slope equations for non-linear wave are analyzed, and new non-linear theoretic models for wave propagation are presented, with non-linear terms added to th...In this paper, the characteristics of different forms of mild slope equations for non-linear wave are analyzed, and new non-linear theoretic models for wave propagation are presented, with non-linear terms added to the mild slope equations for non-stationary linear waves and dissipative effects considered. Numerical simulation models are developed of non-linear wave propagation for waters of mildly varying topography with complicated boundary, and the effects are studied of different non-linear corrections on calculation results of extended mild slope equations. Systematical numerical simulation tests show that the present models can effectively reflect non-linear effects.展开更多
The non-linear constitutive model suggested by the authors and the Alonso's elasto-plasticity model of unsaturated soil modified by the authors are introduced into the consolidation theory of unsaturated soil prop...The non-linear constitutive model suggested by the authors and the Alonso's elasto-plasticity model of unsaturated soil modified by the authors are introduced into the consolidation theory of unsaturated soil proposed by CHEN Zheng-han, and the non-linear and the elasto-plasticity consolidation models of unsaturated soil are obtained. Programs related to the two consolidation models are designed, and a 2-D consolidation problem of unsaturated sail is solved using the programs, the consolidation process and the development of plastic;one under multi-grade bad are studied. The above research develops the consolidation theory of unsaturated soil to a new level.展开更多
A phenomenological model for predicting the vortex-induced motion (VIM) of a single-column platform with non- linear stiffness has been proposed. The VIM model is based on the couple of the Duffing-van der Pol oscilla...A phenomenological model for predicting the vortex-induced motion (VIM) of a single-column platform with non- linear stiffness has been proposed. The VIM model is based on the couple of the Duffing-van der Pol oscillators and the motion equations with non-linear terms. The model with liner stiffness is presented for comparison and their results are compared with the experiments in order to calibrate the model. The computed results show that the predicted VIM amplitudes and periods of oscillation are in qualitative agreements with the experimental data. Compared with the results with linear stiffness, it is found that the application of non-linear stiffness causes the significant reductions in the in-line and transverse motion amplitudes. Under the non-linear stiffness constraint, the lock-in behavior is still identified at 8<Ur<15, and the trajectories of the VIM on the xy plane with eight-figure patterns are maintained. The results with different non-linear geometrically parameters show that both in-line and transverse non-linear characteristics can significantly affect the predict in-line and transverse motion amplitudes. Furthermore, the computed results for different aspect ratios indicate that the in-line and transverse motion amplitudes increase with the growth of aspect ratio, and the range of lock-in region is enlarged for the large aspect ratio.展开更多
文摘In this paper, we study the existence of the transcendental meromorphic solution of the delay differential equations , where a(z) is a rational function, and are polynomials in w(z) with rational coefficients, k is a positive integer. Under the assumption when above equations own transcendental meromorphic solutions with minimal hyper-type, we derive the concrete conditions on the degree of the right side of them. Specially, when w(z)=0 is a root of , its multiplicity is at most k. Some examples are given here to illustrate that our results are accurate.
文摘This paper describes analytical and numerical methods to analyze the steady state periodic response of an oscillator with symmetric elastic and inertia nonlinearity. A new implementation of the homotopy perturbation method (HPM) and an ancient Chinese method called the max-rain approach are presented to obtain an approximate solution. The major concern is to assess the accuracy of these approximate methods in predicting the system response within a certain range of system parameters by examining their ability to establish an actual (numerical) solution. Therefore, the analytical results are compared with the numerical results to illustrate the effectiveness and convenience of the proposed methods.
文摘We present a numerical investigation of the propagation and the switching of ultra-short pulses (100 fs) in a two-core nonlinear coupler of photonic crystal fibers constructed with periodically modulated the non-linearity fiber (PMNL-PFC). Our simulations are taking into account different amplitude and frequency modulations of the PMNL-PFC. A coupler for coupling whose length is Lc = 1.8 cm, the transmission characteristics, the compression factor, the crosstalk (Xtalk) and extinction ratio (Xratio) levels of the first order solitons were studied for low to high pump energies considering 2Lc. By an analysis on the reference channel (channel 2), it is observed that at low modulation frequencies an increase occurs in the switching power increasing transmission efficiency. For high modulation frequencies, the transmitted energy efficiency loses. The switching pulses are stronger for low frequency and high amplitude modulation. The Xtalk is a function of the measurement made on the secondary channel (channel 1). It was observed that this unwanted high-frequency energy increases to lessen the measure of the amplitude modulation. In summary, we have demonstrated that introduction of a non-linearity profile takes the periodically modulated PMNL-PFC to strong variations at transmission efficiency, Xtalk, Xratio a function of frequency and modulation amplitude and the input power.
基金Project supported by the Department of Science and Technology(DST),Govt.of India
文摘CeO2/TiO2 composite nanoparticles with different Ce/Ti molar ratios have been successfully synthesized via sol-gel method. It was found that the band gap of the nanocomposite is tunable by varying Ce/Ti content. The nonlinear response of the sample was studied by using the nanosecond laser pulses from a Q switched Nd:Yag laser employing the Z-scan method. Open aperture Z-scan experiment revealed that with the increase in the CeO2 amount in the nanocomposite, the non-linearity of the composite increases, and it was assumed that this could be due to the modification of TiO2 dipole symmetry by the addition of CeO2. Closed aperture Z-scan experiment showed that when the CeO2 amount increases, positive nonlinear refraction decreases, and this could be attributed to the increase in the two photon absorption which subsequently suppresses the nonlinear refraction.
基金The National Natural Science Foundation of China(No.60172013)
文摘The present paper tries to discuss the quantity instability in the non-linearity dynamics equations without the limit of the stability in the dynamics equations. The result shows that the quantity instability of non-linearity can be deducted to the turning transformation in the curvature space. “The dynamics of varying acceleration" is not the issue of inertia system in science of the time. The particularity as information cannot limit the quantity instability with the quantity stability in inertia system. The particular information does have the significant meaning related to the turning transformation in evolution, in which each problem of non-linearity or matter evolution can go out of the inertia system by means of “kill three birds with one stone".
文摘In order to solve serious urban transport problems, according to the proved chaotic characteristic of traffic flow, a non linear chaotic model to analyze the time series of traffic flow is proposed. This model reconstructs the time series of traffic flow in the phase space firstly, and the correlative information in the traffic flow is extracted richly, on the basis of it, a predicted equation for the reconstructed information is established by using chaotic theory, and for the purpose of obtaining the optimal predicted results, recognition and optimization to the model parameters are done by using genetic algorithm. Practical prediction research of urban traffic flow shows that this model has famous predicted precision, and it can provide exact reference for urban traffic programming and control.
基金supported by National Natural Science Foundation of China (Grant No. 60879002)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2006AA110112)
文摘Many simple nonlinear main journal bearing models have been studied theoretically, but the connection to existing engineering system has not been equally investigated. The consideration of the characteristics of engine main journal bearings may provide a prediction of the bearing load and lubrication. Due to the strong non-linear features in bearing lubrication procedure, it is difficult to predict those characteristics. A non-linear dynamic model is described for analyzing the characteristics of engine main journal bearings. Components such as crankshaft, main journals and con rods are found by applying the finite element method. Non-linear spring/dampers are introduced to imitate the constraint and supporting functions provided by the main bearing and oil film. The engine gas pressure is imposed as excitation on the model via the engine piston, con rod, etc. The bearing reaction force is calculated over one engine cycle, and meanwhile, the oil film thickness and pressure distribution are obtained based on Reynolds differential equation. It can be found that the maximum bearing reaction force always occurs when the maximum cylinder pressure arises in the cylinder adjacent to that bearing. The simulated minimum oil film thickness, which is 3 μm, demonstrates the reliability of the main journal bearings. This non-linear dynamic analysis may save computing efforts of engine main bearing design and also is of good precision and close connection to actual engine main journal bearing conditions.
基金Project supported by the National Natural Science Foundation of China (No. 10472060)Natural Science Founda-tion of Shanghai Municipality (No. 04ZR14058)Doctor Start-up Foundation of Shenyang Institute of Aeronautical Engineering (No. 05YB04).
文摘The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is derived from the dynamical, constitutive equations and geometrical relations. By referring to the quasi-static stretch assumption, the partial-differential non-linearity is reduced to an integro-partial-differential one. The method of multiple scales is directly applied to the governing equations with the two types of non-linearity, respectively. The amplitude of near- and exact-resonant steady state is analyzed by use of the solvability condition of eliminating secular terms. Numerical results are presented to show the contributions of foundation vibration amplitude, viscoelastic damping, and nonlinearity to the response amplitude for the first and the second mode.
文摘In this paper the authors study a class of non-linear singular partial differential equation in complex domain C-t x C-x(n). Under certain assumptions, they prove the existence and uniqueness of holomorphic solution near origin of C-t x C-x(n).
文摘Because of the effect of unbalance excitation and nonlinear magnetic force, the large vibration of the rotor supported by active magnetic bearing(AMB) will go beyond the radial gap of the bearing, even causing mechanical touch-rubbing when the system works at an operational speed closer to the critical speed. In order to investigate this problem, the linear model and nonlinear model of the single mass symmetric rigid rotor system supported by AMB are established respectively and the corresponding transfer functions of close-loop system are given. To pass through the numerical calculation by using MATLAB/Simulink, the effect of both the unbalance response and threshold speed of touch-rubbing of the system subjected to nonlinear magnetic forces and nonlinear output current of power amplifier are studied. Furthermore, threshold speed of touch-rubbing of the rotor-bearing system is defined and the results of numerical simulation are presented. Finally, based on above studies, two methods of increasing the touch-rubbing threshold speed are discussed.
基金support by the National Basic Research Program of China (973) (2012CB025903)the National Natural Science Foundation of China (10871159)Basic Research Program of China(2005CB321704)
文摘In this work, the transient free surface of con- tainer filling with non-linear constitutive equation's fluids is numerically investigated by the smoothed particle hydrody- namics (SPH) method. Specifically, the filling process of a square container is considered for non-linear polymer fluids based on the Cross model. The validity of the presented SPH is first verified by solving the Newtonian fluid and Oldroyd- B fluid jet. Various phenomena in the filling process are shown, including the jet buckling, jet thinning, splashing or spluttering, steady filling. Moreover, a new phenomenon of vortex whirling is more evidently observed for the Cross model fluid compared with the Newtonian fluid case.
基金National Natural Science Foundation of China (50375124) Hi-tech Research and Development Program of China (2006AA04Z401)
文摘Damage-modified nonlinear viscoelastic constitutive equation and failure criterion are introduced and the three-dimensional incremental forms are deduced based on the updated Lagrangian approach. A simple tensile test model and a split Hopkinson pressure bar model are built to verify the accuracy of the subroutine implemented within the non-linear finite element program LS-DYNA. A numerical model of bird strike on windshield is established to study the responses of windshield under three different bird velocities at three sites. The bird is represented by a cylinder with a hemisphere at each end and the contact-impact coupling algorithm is used in this study. It is found that the implemented subroutine can properly describe the mechanical behavior of polymethyl methaerylate under low and high strain rates and large deformation, and can be used validly.
文摘In this paper, the characteristics of different forms of mild slope equations for non-linear wave are analyzed, and new non-linear theoretic models for wave propagation are presented, with non-linear terms added to the mild slope equations for non-stationary linear waves and dissipative effects considered. Numerical simulation models are developed of non-linear wave propagation for waters of mildly varying topography with complicated boundary, and the effects are studied of different non-linear corrections on calculation results of extended mild slope equations. Systematical numerical simulation tests show that the present models can effectively reflect non-linear effects.
文摘The non-linear constitutive model suggested by the authors and the Alonso's elasto-plasticity model of unsaturated soil modified by the authors are introduced into the consolidation theory of unsaturated soil proposed by CHEN Zheng-han, and the non-linear and the elasto-plasticity consolidation models of unsaturated soil are obtained. Programs related to the two consolidation models are designed, and a 2-D consolidation problem of unsaturated sail is solved using the programs, the consolidation process and the development of plastic;one under multi-grade bad are studied. The above research develops the consolidation theory of unsaturated soil to a new level.
基金supported by the National Natural Science Foundation of China(Grant No.51679138)the 1000 Young Talent Program(Grant No.15Z127060020)the National Basic Research Program of China(973 Program,Grant Nos.2015CB251203 and 2013CB036103)
文摘A phenomenological model for predicting the vortex-induced motion (VIM) of a single-column platform with non- linear stiffness has been proposed. The VIM model is based on the couple of the Duffing-van der Pol oscillators and the motion equations with non-linear terms. The model with liner stiffness is presented for comparison and their results are compared with the experiments in order to calibrate the model. The computed results show that the predicted VIM amplitudes and periods of oscillation are in qualitative agreements with the experimental data. Compared with the results with linear stiffness, it is found that the application of non-linear stiffness causes the significant reductions in the in-line and transverse motion amplitudes. Under the non-linear stiffness constraint, the lock-in behavior is still identified at 8<Ur<15, and the trajectories of the VIM on the xy plane with eight-figure patterns are maintained. The results with different non-linear geometrically parameters show that both in-line and transverse non-linear characteristics can significantly affect the predict in-line and transverse motion amplitudes. Furthermore, the computed results for different aspect ratios indicate that the in-line and transverse motion amplitudes increase with the growth of aspect ratio, and the range of lock-in region is enlarged for the large aspect ratio.