When dealing with a regular (fixed-support) one-parameter distribution, the corresponding maximum-likelihood estimator (MLE) is, to a good approximation, normally distributed. But, when the support boundaries are func...When dealing with a regular (fixed-support) one-parameter distribution, the corresponding maximum-likelihood estimator (MLE) is, to a good approximation, normally distributed. But, when the support boundaries are functions of the parameter, finding good approximation for the sampling distribution of MLE (needed to construct an accurate confidence interval for the parameter’s true value) may get very challenging. We demonstrate the nature of this problem, and show how to deal with it, by a detailed study of a specific situation. We also indicate several possible ways to bypass MLE by proposing alternate estimators;these, having relatively simple sampling distributions, then make constructing a confidence interval rather routine. .展开更多
When dealing with a regular (fixed-support) one-parameter distribution, the corresponding maximum-likelihood estimator (MLE) is, to a good approximation, normally distributed. But, when the support boundaries are func...When dealing with a regular (fixed-support) one-parameter distribution, the corresponding maximum-likelihood estimator (MLE) is, to a good approximation, normally distributed. But, when the support boundaries are functions of the parameter, finding good approximation for the sampling distribution of MLE (needed to construct an accurate confidence interval for the parameter’s true value) may get very challenging. We demonstrate the nature of this problem, and show how to deal with it, by a detailed study of a specific situation. We also indicate several possible ways to bypass MLE by proposing alternate estimators;these, having relatively simple sampling distributions, then make constructing a confidence interval rather routine. .展开更多
基于心里声学客观参量的GA-BP声品质预测模型能够准确的预测稳态排气噪声声品质。对于非稳态噪声研究,引入正则化非稳态回归技术(RNR)优化计算维格纳-威尔分布(WVD)的时频方法,建立新的声品质参量SQP-RW(Sound Quality Parameter Base o...基于心里声学客观参量的GA-BP声品质预测模型能够准确的预测稳态排气噪声声品质。对于非稳态噪声研究,引入正则化非稳态回归技术(RNR)优化计算维格纳-威尔分布(WVD)的时频方法,建立新的声品质参量SQP-RW(Sound Quality Parameter Base on RNR-WVD),用此参量替换掉与满意度相关性较小的客观参量。同时,以Morlet小波基函数作为隐含层结点的传递函数构建小波神经网络(Wavelet Neural Network,WNN),并用GA优化小波神经网络层间的权值和阈值,构造出GA-WNN并用于非稳态排气噪声声品质预测。结果表明:GA-WNN在非稳态排气噪声声品质预测上比GA-BP神经网络更加准确;引入SQP-RW参量,模型具有更高的精度,更能体现出非稳态信号特征及声品质特点。展开更多
个性化联邦学习侧重于为各客户端提供个性化模型,旨在提高对异构数据的处理性能,然而现有的个性化联邦学习算法大多以增加客户端参数量为代价提高个性化模型的性能,使计算变得复杂.为了解决此问题,文中提出基于稀疏正则双层优化的个性...个性化联邦学习侧重于为各客户端提供个性化模型,旨在提高对异构数据的处理性能,然而现有的个性化联邦学习算法大多以增加客户端参数量为代价提高个性化模型的性能,使计算变得复杂.为了解决此问题,文中提出基于稀疏正则双层优化的个性化联邦学习算法(Personalized Federated Learning Based on Sparsity Regularized Bi-level Optimization,pFedSRB),在客户端的个性化更新中引入l 1范数稀疏正则化,提升个性化模型的稀疏度,避免不必要的客户端参数更新,降低模型复杂度.将个性化联邦学习建模为双层优化问题,内层优化采用交替方向乘子法,可提高学习速度.在4个联邦学习基准数据集上的实验表明,pFedSRB在异构数据上表现出色,在提高模型性能的同时有效降低训练用时和空间成本.展开更多
文摘When dealing with a regular (fixed-support) one-parameter distribution, the corresponding maximum-likelihood estimator (MLE) is, to a good approximation, normally distributed. But, when the support boundaries are functions of the parameter, finding good approximation for the sampling distribution of MLE (needed to construct an accurate confidence interval for the parameter’s true value) may get very challenging. We demonstrate the nature of this problem, and show how to deal with it, by a detailed study of a specific situation. We also indicate several possible ways to bypass MLE by proposing alternate estimators;these, having relatively simple sampling distributions, then make constructing a confidence interval rather routine. .
文摘When dealing with a regular (fixed-support) one-parameter distribution, the corresponding maximum-likelihood estimator (MLE) is, to a good approximation, normally distributed. But, when the support boundaries are functions of the parameter, finding good approximation for the sampling distribution of MLE (needed to construct an accurate confidence interval for the parameter’s true value) may get very challenging. We demonstrate the nature of this problem, and show how to deal with it, by a detailed study of a specific situation. We also indicate several possible ways to bypass MLE by proposing alternate estimators;these, having relatively simple sampling distributions, then make constructing a confidence interval rather routine. .
文摘基于心里声学客观参量的GA-BP声品质预测模型能够准确的预测稳态排气噪声声品质。对于非稳态噪声研究,引入正则化非稳态回归技术(RNR)优化计算维格纳-威尔分布(WVD)的时频方法,建立新的声品质参量SQP-RW(Sound Quality Parameter Base on RNR-WVD),用此参量替换掉与满意度相关性较小的客观参量。同时,以Morlet小波基函数作为隐含层结点的传递函数构建小波神经网络(Wavelet Neural Network,WNN),并用GA优化小波神经网络层间的权值和阈值,构造出GA-WNN并用于非稳态排气噪声声品质预测。结果表明:GA-WNN在非稳态排气噪声声品质预测上比GA-BP神经网络更加准确;引入SQP-RW参量,模型具有更高的精度,更能体现出非稳态信号特征及声品质特点。
文摘个性化联邦学习侧重于为各客户端提供个性化模型,旨在提高对异构数据的处理性能,然而现有的个性化联邦学习算法大多以增加客户端参数量为代价提高个性化模型的性能,使计算变得复杂.为了解决此问题,文中提出基于稀疏正则双层优化的个性化联邦学习算法(Personalized Federated Learning Based on Sparsity Regularized Bi-level Optimization,pFedSRB),在客户端的个性化更新中引入l 1范数稀疏正则化,提升个性化模型的稀疏度,避免不必要的客户端参数更新,降低模型复杂度.将个性化联邦学习建模为双层优化问题,内层优化采用交替方向乘子法,可提高学习速度.在4个联邦学习基准数据集上的实验表明,pFedSRB在异构数据上表现出色,在提高模型性能的同时有效降低训练用时和空间成本.