Image denoising technology is one of the forelands in the field of computer graphic and computer vision. Non-local means method is one of the great performing methods which arouse tremendous research. In this paper, a...Image denoising technology is one of the forelands in the field of computer graphic and computer vision. Non-local means method is one of the great performing methods which arouse tremendous research. In this paper, an improved weighted non-local means algorithm for image denoising is proposed. The non-local means denoising method replaces each pixel by the weighted average of pixels with the surrounding neighborhoods. The proposed method evaluates on testing images with various levels noise. Experimental results show that the algorithm improves the denoising performance.展开更多
Non-local means(NLM)method is a state-of-the-art denoising algorithm, which replaces each pixel with a weighted average of all the pixels in the image. However, the huge computational complexity makes it impractical f...Non-local means(NLM)method is a state-of-the-art denoising algorithm, which replaces each pixel with a weighted average of all the pixels in the image. However, the huge computational complexity makes it impractical for real applications. Thus, a fast non-local means algorithm based on Krawtchouk moments is proposed to improve the denoising performance and reduce the computing time. Krawtchouk moments of each image patch are calculated and used in the subsequent similarity measure in order to perform a weighted averaging. Instead of computing the Euclidean distance of two image patches, the similarity measure is obtained by low-order Krawtchouk moments, which can reduce a lot of computational complexity. Since Krawtchouk moments can extract local features and have a good antinoise ability, they can classify the useful information out of noise and provide an accurate similarity measure. Detailed experiments demonstrate that the proposed method outperforms the original NLM method and other moment-based methods according to a comprehensive consideration on subjective visual quality, method noise, peak signal to noise ratio(PSNR), structural similarity(SSIM) index and computing time. Most importantly, the proposed method is around 35 times faster than the original NLM method.展开更多
The non-local means (NLM) denoising method replaces each pixel by the weighted average of pixels with the sur-rounding neighborhoods. In this paper we employ a cosine weighting function instead of the original exponen...The non-local means (NLM) denoising method replaces each pixel by the weighted average of pixels with the sur-rounding neighborhoods. In this paper we employ a cosine weighting function instead of the original exponential func-tion to improve the efficiency of the NLM denoising method. The cosine function outperforms in the high level noise more than low level noise. To increase the performance more in the low level noise we calculate the neighborhood si-milarity weights in a lower-dimensional subspace using singular value decomposition (SVD). Experimental compari-sons between the proposed modifications against the original NLM algorithm demonstrate its superior denoising per-formance in terms of peak signal to noise ratio (PSNR) and histogram, using various test images corrupted by additive white Gaussian noise (AWGN).展开更多
In medical images, exist often a lot of noise, the noise will seriously affect the accuracy of the segmentation results. The traditional standard fuzzy c-means(FCM) algorithm in image segmentation do not taken into ac...In medical images, exist often a lot of noise, the noise will seriously affect the accuracy of the segmentation results. The traditional standard fuzzy c-means(FCM) algorithm in image segmentation do not taken into account the relationship the adjacent pixels, which leads to the standard fuzzy c-means(FCM) algorithm is very sensitive to noise in the image. Proposed improvedfuzzy c-means(FCM) algorithm, taking both the local and non-local information into the standard fuzzy c-means(FCM) clustering algorithm. The ex-periment results can show that the improved algorithm can achieve better effect than other methods of brain tissue segmentation.展开更多
为解决包裹相位图中存留的散斑噪声问题,文中提出了一种基于正余弦分解的两分段自适应非局部均值滤波方法。该方法通过两次改进衰减参数的大小和相似性度量的方式实现了算法的自适应化。利用该方法对包裹相位图的正余弦分量去噪,去噪后...为解决包裹相位图中存留的散斑噪声问题,文中提出了一种基于正余弦分解的两分段自适应非局部均值滤波方法。该方法通过两次改进衰减参数的大小和相似性度量的方式实现了算法的自适应化。利用该方法对包裹相位图的正余弦分量去噪,去噪后利用反正切运算获取干净的包裹相位,对该相位进行解包裹运算。实验和仿真结果表明,所提方法既有效去除了包裹相位图中的噪声,也保留了相位图中的边缘信息。相比于分别使用SCA(Sine Cosine Algorithm)方法和BM3D(Block-Matching and 3D filtering)方法,通过所提方法去噪后的图像等效视数(Equivalent Number of Looks,ENL)最大,散斑抑制指数(Speckle Suppression Index,SSI)最小,且均方误差提升了约两倍,说明所提方法有效去除了包裹相位中的噪声,提高了相位解包裹的精度。展开更多
针对传统船舶图像去噪算法难以对图像的边缘细节进行保留和分析,以及传统非局部均值去噪算法相似框选择困难等问题,提出基于简单线性迭代聚类(simple linear iterative clustering,SLIC)超像素分割的非局部均值船舶图像去噪算法。通过S...针对传统船舶图像去噪算法难以对图像的边缘细节进行保留和分析,以及传统非局部均值去噪算法相似框选择困难等问题,提出基于简单线性迭代聚类(simple linear iterative clustering,SLIC)超像素分割的非局部均值船舶图像去噪算法。通过SLIC算法对图像进行分割处理,界定图像的纹理区域和平滑区域;使用相似框搜索和匹配策略,提升匹配效果,并适当保留更多边缘细节,从而改善图像去噪的效果。实验结果表明,所提出的算法相较于其他传统的船舶图像去噪算法不仅能很好地保留船舶图像的边缘细节特点,而且能在一定程度上提高船舶图像的峰值信噪比,具有良好的去噪效果,可以用于智能航海领域船舶图像的去噪。展开更多
文摘Image denoising technology is one of the forelands in the field of computer graphic and computer vision. Non-local means method is one of the great performing methods which arouse tremendous research. In this paper, an improved weighted non-local means algorithm for image denoising is proposed. The non-local means denoising method replaces each pixel by the weighted average of pixels with the surrounding neighborhoods. The proposed method evaluates on testing images with various levels noise. Experimental results show that the algorithm improves the denoising performance.
基金Supported by the Open Fund of State Key Laboratory of Marine Geology,Tongji University(No.MGK1412)Open Fund(No.PLN1303)of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University)+2 种基金Open Fund of Jiangsu Key Laboratory of Quality Control and Further Processing of Cereals and Oils,Nanjing University of Finance Economics(No.LYPK201304)Foundation of Graduate Innovation Center in NUAA(No.kfjj201430)Fundamental Research Funds for the Central Universities
文摘Non-local means(NLM)method is a state-of-the-art denoising algorithm, which replaces each pixel with a weighted average of all the pixels in the image. However, the huge computational complexity makes it impractical for real applications. Thus, a fast non-local means algorithm based on Krawtchouk moments is proposed to improve the denoising performance and reduce the computing time. Krawtchouk moments of each image patch are calculated and used in the subsequent similarity measure in order to perform a weighted averaging. Instead of computing the Euclidean distance of two image patches, the similarity measure is obtained by low-order Krawtchouk moments, which can reduce a lot of computational complexity. Since Krawtchouk moments can extract local features and have a good antinoise ability, they can classify the useful information out of noise and provide an accurate similarity measure. Detailed experiments demonstrate that the proposed method outperforms the original NLM method and other moment-based methods according to a comprehensive consideration on subjective visual quality, method noise, peak signal to noise ratio(PSNR), structural similarity(SSIM) index and computing time. Most importantly, the proposed method is around 35 times faster than the original NLM method.
文摘The non-local means (NLM) denoising method replaces each pixel by the weighted average of pixels with the sur-rounding neighborhoods. In this paper we employ a cosine weighting function instead of the original exponential func-tion to improve the efficiency of the NLM denoising method. The cosine function outperforms in the high level noise more than low level noise. To increase the performance more in the low level noise we calculate the neighborhood si-milarity weights in a lower-dimensional subspace using singular value decomposition (SVD). Experimental compari-sons between the proposed modifications against the original NLM algorithm demonstrate its superior denoising per-formance in terms of peak signal to noise ratio (PSNR) and histogram, using various test images corrupted by additive white Gaussian noise (AWGN).
文摘In medical images, exist often a lot of noise, the noise will seriously affect the accuracy of the segmentation results. The traditional standard fuzzy c-means(FCM) algorithm in image segmentation do not taken into account the relationship the adjacent pixels, which leads to the standard fuzzy c-means(FCM) algorithm is very sensitive to noise in the image. Proposed improvedfuzzy c-means(FCM) algorithm, taking both the local and non-local information into the standard fuzzy c-means(FCM) clustering algorithm. The ex-periment results can show that the improved algorithm can achieve better effect than other methods of brain tissue segmentation.
文摘为解决包裹相位图中存留的散斑噪声问题,文中提出了一种基于正余弦分解的两分段自适应非局部均值滤波方法。该方法通过两次改进衰减参数的大小和相似性度量的方式实现了算法的自适应化。利用该方法对包裹相位图的正余弦分量去噪,去噪后利用反正切运算获取干净的包裹相位,对该相位进行解包裹运算。实验和仿真结果表明,所提方法既有效去除了包裹相位图中的噪声,也保留了相位图中的边缘信息。相比于分别使用SCA(Sine Cosine Algorithm)方法和BM3D(Block-Matching and 3D filtering)方法,通过所提方法去噪后的图像等效视数(Equivalent Number of Looks,ENL)最大,散斑抑制指数(Speckle Suppression Index,SSI)最小,且均方误差提升了约两倍,说明所提方法有效去除了包裹相位中的噪声,提高了相位解包裹的精度。
文摘磁共振成像(Magnetic Resonance Imaging,MRI)已经成为一种常见的影像检查方式,MRI的去噪算法影响着MRI的成像效果。基于深度学习的MRI去噪算法需要一定量的数据,绝大部分基于非深度学习的MRI去噪算法都是将MRI数据转化为实数之后进行去噪的,针对复数MRI中的复数数据类型的算法也存在着失真的问题。因此,提出一种通过单张MRI脑图像的原始数据进行噪点剔除的算法,以此更好得去除图像噪声。该算法从MRI的原始数据出发,利用了MRI噪声分布性质和MRI脑图像的特点,以判断MRI图像中噪声明显的点,从而剔除MRI中特定的莱斯分布的噪声。并将所提出的算法结合了MRI去噪中常用的非局部平均算法(Non-Local Means denoising,NLM)与三维块匹配算法(Block-Matching and 3D filtering,BM3D),并和不使用该算法剔除噪点的NLM、BM3D进行了对比评估。对比结果表明,在噪声密度不同的多种情况下,该算法总能优化与之相结合的图像去噪算法,在不同的噪声情况下使峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)与结构相似性(Structural Similarity,SSIM)提高了1%~9%。最后将该算法结合BM3D,对比了DnCNN、低秩聚类算法(Weighted Nuclear Norm Minimization,WNNM)、BM3D、NLM等用于MRI去噪的算法,在莱斯噪声较多时,该算法在PSNR上有更好的表现。
文摘针对传统船舶图像去噪算法难以对图像的边缘细节进行保留和分析,以及传统非局部均值去噪算法相似框选择困难等问题,提出基于简单线性迭代聚类(simple linear iterative clustering,SLIC)超像素分割的非局部均值船舶图像去噪算法。通过SLIC算法对图像进行分割处理,界定图像的纹理区域和平滑区域;使用相似框搜索和匹配策略,提升匹配效果,并适当保留更多边缘细节,从而改善图像去噪的效果。实验结果表明,所提出的算法相较于其他传统的船舶图像去噪算法不仅能很好地保留船舶图像的边缘细节特点,而且能在一定程度上提高船舶图像的峰值信噪比,具有良好的去噪效果,可以用于智能航海领域船舶图像的去噪。