In the petrochemical industry process, the relative volatility between the components to be separated is close to one or the azeotrope that systems are difficult to separate. Liquid-liquid extraction is a common and e...In the petrochemical industry process, the relative volatility between the components to be separated is close to one or the azeotrope that systems are difficult to separate. Liquid-liquid extraction is a common and effective separation method, and selecting an extraction agent is the key to extraction technology research. In this paper, a design method of extractants based on elements and chemical bonds was proposed. A knowledge-based molecular design method was adopted to pre-select elements and chemical bond groups. The molecules were automatically synthesized according to specific combination rules to avoid the problem of “combination explosion” of molecules. The target properties of the extractant were set, and the extractant meeting the requirements was selected by predicting the correlation physical properties of the generated molecules. Based on the separation performance of the extractant in liquid-liquid extraction and the relative importance of each index, the fuzzy comprehensive evaluation membership function was established, the analytic hierarchy process determined the mass ratio of each index, and the consistency test results were passed. The results of case study based on quantum chemical analysis demonstrated that effective determination of extractants for the analysis of benzene-cyclohexane systems. The results unanimously prove that the method has important theoretical significance and application value.展开更多
Molecular property depends on the property, the number of the elements, and the interaction between elements(such as chemical bonds). Based on the above-mentioned idea, two methods to estimate the isobaric heat capaci...Molecular property depends on the property, the number of the elements, and the interaction between elements(such as chemical bonds). Based on the above-mentioned idea, two methods to estimate the isobaric heat capacity of liquids organic compounds were developed. Ten elements groups and 32 chemical bond groups were defined by considering the structure of organic compounds. The group contribution values and correlation parameters were regressed by the ridge regression method with the experiment data of 1137 compounds. The heat capacity can be calculated by summating the contributions of the elements and chemical bond groups. The two methods were compared with existing group contribution methods, such as Chickos, Zabransky-Ruzicka, and Zdenka Kolska. The results show that those new estimation methods' overall average relative deviations were 5.81% and 5.71%, which were lower than the other three methods. Those methods were more straightforward in compound splitting.Those new methods can be used to estimate the liquid heat capacity of silicon-containing compounds,which the other three methods cannot estimate. The new methods are more accessible, broader, and more accurate. Therefore, this research has important scientific significance and vast application prospects.展开更多
Oxygen anion redox reaction provides a high theoretical capacity for Li-rich manganese-based cathodes.However,irreversible surface oxygen release often results in further oxygen loss and exacerbates the decomposition ...Oxygen anion redox reaction provides a high theoretical capacity for Li-rich manganese-based cathodes.However,irreversible surface oxygen release often results in further oxygen loss and exacerbates the decomposition of the electrolyte,which could reduce the capacity contribution from the anionic redox and produce more acidic substances to corrode the surface of the material.In this paper,the surface oxygen release is suppressed by moderating oxygen anion redox activity via constructing chemical bonds between M(M=Fe and La)in LaFeO_(3)and surface oxygen anions of Li_(1.2)Mn_(0.6)Ni_(0.2)O_(2).The constructed interface layer stabilizes the surface lattice oxygen and retards the electrolyte from being attacked by the nucleophilic oxygen generated in the process of oxygen release,as evidenced by Differential Electrochemical Mass Spectrometry(DEMS)and X-ray Photoelectron Spectroscopy(XPS)detections.Moreover,in the charge and discharge process,the formed FeF_(3),located at the cathode electrolyte interfacial layer,is conducive to the stability of the cathode surface.The modified Li_(1.2)Mn_(0.6)Ni_(0.2)O_(2)electrode with 3 wt%LaFeO_(13)exhibits a high specific capacity of 189.5 mA h g-at 1C(200 mA g^(-1))after 150 cycles with capacity retentions of 96.6%,and 112.6 mA h g^(-1)(84.7%)at 5C after 200 cycles higher than the pristine sample.This study provides a rational design chemical bonding method to suppress the oxygen release from the cathode surface and enhance cyclic stability.展开更多
The aim of this study is to examine the unsteady hydromagnetic flow of non-Newtonian nanofluid past a stretching sheet in the presence of variable magnetic field and chemical reaction. The system of non-linear partial...The aim of this study is to examine the unsteady hydromagnetic flow of non-Newtonian nanofluid past a stretching sheet in the presence of variable magnetic field and chemical reaction. The system of non-linear partial differential equations governing the flow was solved using finite difference numerical approximation method. The resulting numerical schemes were simulated in MATLAB software. Furthermore, the skin-friction coefficient, Sherwood number, and Nusselt number have been presented in tabular form and discussed. The findings demonstrated that increasing Reynolds number increases velocity profiles while increasing permeability parameter, suction parameter and angle of inclination for the applied magnetic field reduces the velocity profiles of the fluid flow. Temperature of the fluid increases as the angle of inclination, magnetic number, Reynolds number and Eckert number increase but decreases as Prandtl number increases. Induced magnetic field profiles decrease as magnetic Prandtl number and suction parameter increase. Concentration profiles decrease as the chemical reaction parameter and Schmidt number increase but increase as the Soret number increases. The study is significant because fluid flow and heat transfer mechanisms with the variable magnetic considerations play an important role in magnetohydrodynamic generator or dynamo and magnetohydrodynamic pumps, nuclear reactors, vehicle thermal control, heat exchangers, cancer therapy, wound treatment and hyperthermia.展开更多
Chemically bonded sand cores and molds are more commonly referred to as precision sand systems in the high production automotive powertrain sector. Their behavior in contact with molten metal can lead to casting defec...Chemically bonded sand cores and molds are more commonly referred to as precision sand systems in the high production automotive powertrain sector. Their behavior in contact with molten metal can lead to casting defects. Consequently, the interaction is of great interest and an important part of metal casting technology. The American Foundry Society(AFS) sand testing is based on physical, mechanical, thermal and chemical properties of the sand system. Foundry engineers have long known that certain AFS sand tests provide limited information regarding control of molding and casting quality. The inadequacy is due to the fact that sand casting processes are inherently thermo-mechanical, thermo-chemical and thermo-physical. Non-standard foundry sand testing has proven useful for laboratory measurement of these characteristics in foundry sand using a disc-shaped specimen. Similarly, the equivalent disc-shaped specimens are used for casting trials. In order to accomplish near-net-shape casting with minimal defects, it is necessary to understand both the properties of the sand system, as well as the interface of molten metal when different binders, additives and/or refractory coatings are used. The methodology for the following non-standard chemically bonded sand tests is described:(1) disc transverse;(2) impact;(3) modified permeability;(4) abrasion;(5) thermal distortion;(6) quick loss on ignition. The data related to the non-standard sand tests were analyzed and interpreted. The test results indicate that there is relatively lower test-to-test variability with the disc-shaped specimens. The non-standard tests were able to discriminate between the chemically bonded polyurethane cold box sand specimens. Further studies should be conducted on various other sand and binder systems as well as on different specimen thicknesses.展开更多
The electronic structures, chemical bonding and elastic properties of the tetragonal phase BiOCuS were investigated by using density-functional theory (DFT) within generalized gradient approximation (GGA). The cal...The electronic structures, chemical bonding and elastic properties of the tetragonal phase BiOCuS were investigated by using density-functional theory (DFT) within generalized gradient approximation (GGA). The calculated energy band structures show that the tetragonal phase BiOCuS is an indirect semiconductor with the calculated band gap of about 0.503 eV. The density of states (DOS) and the partial density of states (PDOS) calculations show that the DOS near the Fermi level is mainly from the Cu-3d state. Population analysis suggests that the chemical bonding in BiOCuS has predominantly ionic character with mixed covalent-ionic character. Basic physical properties, such as lattice constant, bulk modulus, shear modulus, elastic constants, were calculated. The elastic modulus and Poisson ratio were also predicted. The results show that tetragonal phase BiOCuS is mechanically stable and behaves in a ductile manner.展开更多
The electronic structures, chemical bonding and elastic properties of the Co2P-type structure phase ultra-incompressible Re2P (orthorhombic phase) were investigated by density-functional theory (DFT) within genera...The electronic structures, chemical bonding and elastic properties of the Co2P-type structure phase ultra-incompressible Re2P (orthorhombic phase) were investigated by density-functional theory (DFT) within generalized gradient approximation (GGA). The calculated energy band structures show that the orthorhombic structure phase Re2P is metallic material. The density of state (DOS) and the partial density of state (PDOS) calculations show that the DOS near the Fermi level is mainly from the Re-5d state. Population analysis suggests that the chemical bonding in Re2P has predominantly covalent character with mixed covalent-ionic character. Basic physical properties, such as lattice constant, bulk modulus, shear modulus, and elastic constants Cij, were calculated. The elastic modulus and Poisson ratio were also predicted. The results show that the Co2P-type structure phase Re2P is mechanically stable and behaves in a brittle manner.展开更多
The structural parameters, chemical bonding and elastic properties of the tetragonal phase quaternary arsenide oxides YZnAsO and LaZnAsO were investigated by using density-functional theory (DFT) within generalized ...The structural parameters, chemical bonding and elastic properties of the tetragonal phase quaternary arsenide oxides YZnAsO and LaZnAsO were investigated by using density-functional theory (DFT) within generalized gradient approximation (GGA). The GGA calculated structural parameters are in agreement with the experimental results. Population analysis suggests that the chemical bonding in YZnAsO and LaZnAsO can be classified as a mixture of ionic and covalent characteristic. Single-crystal elastic constants were calculated and the polycrystalline elastic modules were estimated according to Voigt, Reuss and Hill's approximations (VRH). The result shows that both YZnAsO and LaZnAsO are relatively soft materials exhibiting ductile behavior. The calculated polycrystalline elastic anisotropy result shows that LaZnAsO is more anisotropy in compressibility and YZnAsO is more anisotropy in shear.展开更多
The relation among electronic structure, chemical bond and thermoelectric property of Ca3 Co2 O6 and Ni-doped was studied by density function theory and discrete variation method(DFT-DVM). The results indicate that ...The relation among electronic structure, chemical bond and thermoelectric property of Ca3 Co2 O6 and Ni-doped was studied by density function theory and discrete variation method(DFT-DVM). The results indicate that the highest valence band( HVB )attd the lowest conduction band( LCB ) are mainly attribuled to Co3d, Ni3d and O2p atomic orbitals. The property of a semiconductor is shown from the gap between HVB and LCB. The gap of Ni-doped one is less than that of Ca3 Co2 O6. The non-metal bond or ceramic characteristic of Ni-doped one is weaker than that of Ca3 Co2 O6, but the metal characteristics of Ni-doped one are stronger than those of Ca3 Co2 O6. The thermoelectric property should be improved by adding Ni element into the system of Ca3 Co2 O6 .展开更多
A novel method was proposed to calculate the crystal morphology (or growth habit) on the basis of chemical bond analysis. All constituent chemical bonds were distinguished as relevant and independent bonds according t...A novel method was proposed to calculate the crystal morphology (or growth habit) on the basis of chemical bond analysis. All constituent chemical bonds were distinguished as relevant and independent bonds according to their variations during the crystallization process. By employing the current method, the influence of specific growth conditions on the crystal morphology can be considered in the structure analysis process. The ideal morphologies of both KDP (KH2PO4) and ADP (NH4H2PO4) crystals were calculated and compared with our obtained crystallites at room temperature, which validates the present calculation method very well.展开更多
Titanium diboride was calculated by the density function and discrete variational (DFT-DVM) method to study the relation between structure and properties.Titanium and its first-nearest boron atoms form a strong covale...Titanium diboride was calculated by the density function and discrete variational (DFT-DVM) method to study the relation between structure and properties.Titanium and its first-nearest boron atoms form a strong covalent bond,so TiB 2 has high melting point,hardness and chemical stability.Titanium atom releases two electrons to form Ti 2+ ions,and a boron atom gets one electron to come into B- ion.B- takes the sp2 hybrid and forms σ bonds to link other boron atoms in the same layer.The other one 2p z orbital of every B- ion in the same layer interacts each other to form the π molecular orbital,so TiB 2 has fine electrical property.The calculated density of state is close to the result of XPS experiment of TiB 2.Mainly Ti3d and B2p atomic orbitals contribute the total DOS near the Fermi level.展开更多
The relation among electronic structure, chemical bond and property of Ti3SiC2 and Al-doped was studied by density function and discrete variation ( DFT- DVM) method. When Al element is added into Ti3 SiC2 , there i...The relation among electronic structure, chemical bond and property of Ti3SiC2 and Al-doped was studied by density function and discrete variation ( DFT- DVM) method. When Al element is added into Ti3 SiC2 , there is a less difference of ionic bond, which does not play a leading role to influent the properties. After adding Al, the covalent bond of Al and the near Ti becomes somewhat weaker, but the covalent bond of Al and the Si in the same layer is obviously stronger than that of Si and Si before adding. Therefore, in preparation of Ti3 SiC2 , adding a proper quantity of Al can promote the formation of Ti3 SiC2 . The density of stnte shows that there is a mixed conductor character in both of Ti3 SiC2 and adding Al element. Ti3 SiC2 is with more tendencies to form a semiconductor. The total density of state near Fermi lever after adding Al is larger than that before adding, so the electric conductivity may increase after adding Al.展开更多
Calcium aluminate cement bonded corundum castable specimens were prepared using brown fused corundum (8 - 5, 5 - 3, 3 - 1 mm ) , white fused corundum ( ≤ 1, ≤0. 045 mm), micro-sized α-Al2O3 and microsilica as s...Calcium aluminate cement bonded corundum castable specimens were prepared using brown fused corundum (8 - 5, 5 - 3, 3 - 1 mm ) , white fused corundum ( ≤ 1, ≤0. 045 mm), micro-sized α-Al2O3 and microsilica as starting materials. This work focused on investigating the relationship between the bond change in the castable matrix and the strength of the castable with 5 mass% microsilica or without microsilica after heat treatment at 110, 800 and 1 000 ℃, respectively. Chemical bond changes between the microsilica and hy- drates of calcium aluminate cement after drying at 110 ℃ or firing at 800 ℃ were investigated by XPS and FTIR. The results show that Si-O-Al bonds form be- tween the microsilica and hydrates of calcium aluminate cement after drying at 110 ℃ or firing at 800 ℃. Therefore, the increased strength of castable specimens is attributed to the formation of Si-O-Al bonds from 110 ℃ to 800 ℃.展开更多
The detection by the author of real magnetic charges, as well as true antielectrons in of atomic structures allowed him to establish that atomic shells, as well as shells of nucleons are electromagnetic, and not elect...The detection by the author of real magnetic charges, as well as true antielectrons in of atomic structures allowed him to establish that atomic shells, as well as shells of nucleons are electromagnetic, and not electronic. Namely electromagnetic shells are the sources of gravitational field which is the vortex electromagnetic field. The elementary source of gravitational field is the electromagnetic quasiparticle (S-Graviton) which consists of two coupled dipoles (the magnetic and electric) rotating in antiphase in the same atomic or nucleonic orbit. Electrons in atomic shells are rigidly embedded in the compositions of S-Gravitons and, as a rule, cannot individually participate, for example, in processes of interatomic chemical bonding. Depending on the vector conditions the gravitational fields can be both paragravitational (PGF) so and ferrogravitational (FGF). The overwhelming number of atomic shells and all shells nucleons emit PGF. Between the masses (bodies, atoms, nucleons, etc.) emitting of PGF is realized a force of gravitational “Dark energy” pressing masses to each other. It is the compression of masses by forces of the gravitational “Dark energy” that lies at basis Physics of chemical bond. Depending on implementation in atoms of the effects intra-atomic gravitational shielding/lensing (IAGS/L) discovered and investigated by the author, the gravitational interatomic bonding mechanisms are divided into two groups: non-covalent bonds (IAGS effect) and covalent bonds (IAGL effect). Within the framework of the gravitational bond mechanism of the latter group which is implemented with participation paragravitational orbitals, such chemical concept as valence acquires a real physical meaning. The replacing the erroneous electronic concept of chemical bonding by the gravitational concept implies replacing the notion “electronegativity” of element by the notion the “gravitational activity” while maintaining existing quantitative ability of atoms in molecules to attract atoms of other elements.展开更多
Chemical pesticides play crucial roles in the management of crop diseases and pests. However, excessive and irrational use of pesticides has become a major concern and obstacle to sustainable agriculture. As a result,...Chemical pesticides play crucial roles in the management of crop diseases and pests. However, excessive and irrational use of pesticides has become a major concern and obstacle to sustainable agriculture. As a result, the quality and security of agricultural products are reduced, and the ecological and environmental integrities are threatened. Recently, environment-friendly pest management measures have been introduced and adopted to manage rice insect pests and reduce the use of insecticides. This paper reviewed the advancements in development and application of non-chemical technologies for insect pest management during rice production in China.展开更多
The atom-bond connectivity(ABC) index provides a good model for the stability of linear and branched alkanes as well as the strain energy of cycloalkanes,which is defined as ABC(G) =∑ uv∈E(G) √d u+dv-2 dudv,...The atom-bond connectivity(ABC) index provides a good model for the stability of linear and branched alkanes as well as the strain energy of cycloalkanes,which is defined as ABC(G) =∑ uv∈E(G) √d u+dv-2 dudv,where du denotes the degree of a vertex u in G.A chemical graph is a graph in which no vertex has degree greater than 4.In this paper,we obtain the sharp upper and lower bounds on ABC index of chemical bicyclic graphs.展开更多
The dipole moment, total energy, atomic charge, orbital population and orbital energy of four representative combination models of the favorable growth unit Al6(OH)18(H2O)6 of Al(OH)3 crystals precipitating are ...The dipole moment, total energy, atomic charge, orbital population and orbital energy of four representative combination models of the favorable growth unit Al6(OH)18(H2O)6 of Al(OH)3 crystals precipitating are calculated by ab initio at RHF/STO-3G, RHF/3-21G, RHF/6-31G levels and DFT at RB3LYP/STO-3G, RB3LYP/3-21G, RB3LYP/6-31G levels with Dipole & Sphere solvent model. The effect of various combination models on Van der Waals force is analyzed using dipole moment and molecular radius, and that on chemical bond force is analyzed using total energy, orbital population and orbital energy.展开更多
Non-spherical colloidal silica nanoparticle was prepared by a simple new method, and its particle size distribution and shape morphology were characterized by dynamic light scattering(DLS) and the Focus Ion Beam(FIB) ...Non-spherical colloidal silica nanoparticle was prepared by a simple new method, and its particle size distribution and shape morphology were characterized by dynamic light scattering(DLS) and the Focus Ion Beam(FIB) system. This kind of novel colloidal silica particles can be well used in chemical mechanical polishing(CMP) of sapphire wafer surface. And the polishing test proves that non-spherical colloidal silica slurry shows much higher material removal rate(MRR) with higher coefficient of friction(COF) when compared to traditional large spherical colloidal silica slurry with particle size 80 nm by DLS. Besides, sapphire wafer polished by non-spherical abrasive also has a good surface roughness of 0.460 6 nm. Therefore, non-spherical colloidal silica has shown great potential in the CMP field because of its higher MRR and better surface roughness.展开更多
Analyses of chemical bonding and geometric structures in species with chalcogen elements EThF_2(E=O,S,Se,Te) are performed by the density functional theory. Kohn–Sham molecular orbitals and Th–E bond lengths of thes...Analyses of chemical bonding and geometric structures in species with chalcogen elements EThF_2(E=O,S,Se,Te) are performed by the density functional theory. Kohn–Sham molecular orbitals and Th–E bond lengths of these species both indicate multiple bond character for the terminal chalcogen complexes. This is also confirmed by natural bond orbital analyses using the oneelectron density matrix generated by relativistic density functional calculations. Theoretical analyses indicate that electron donation from E to Th increases down the chalcogen group(O<S<Se<Te). These molecules can serve as examples of multiple bonding between actinide elements and selenium or tellurium.展开更多
基金supported by the National Natural Science Foundation of China(22178190).
文摘In the petrochemical industry process, the relative volatility between the components to be separated is close to one or the azeotrope that systems are difficult to separate. Liquid-liquid extraction is a common and effective separation method, and selecting an extraction agent is the key to extraction technology research. In this paper, a design method of extractants based on elements and chemical bonds was proposed. A knowledge-based molecular design method was adopted to pre-select elements and chemical bond groups. The molecules were automatically synthesized according to specific combination rules to avoid the problem of “combination explosion” of molecules. The target properties of the extractant were set, and the extractant meeting the requirements was selected by predicting the correlation physical properties of the generated molecules. Based on the separation performance of the extractant in liquid-liquid extraction and the relative importance of each index, the fuzzy comprehensive evaluation membership function was established, the analytic hierarchy process determined the mass ratio of each index, and the consistency test results were passed. The results of case study based on quantum chemical analysis demonstrated that effective determination of extractants for the analysis of benzene-cyclohexane systems. The results unanimously prove that the method has important theoretical significance and application value.
基金Financial support from the National Natural Science Foundation of China (22178190)the Major Science and Technology Innovation Project of Shandong Province (2018CXGC1102) is gratefully acknowledged。
文摘Molecular property depends on the property, the number of the elements, and the interaction between elements(such as chemical bonds). Based on the above-mentioned idea, two methods to estimate the isobaric heat capacity of liquids organic compounds were developed. Ten elements groups and 32 chemical bond groups were defined by considering the structure of organic compounds. The group contribution values and correlation parameters were regressed by the ridge regression method with the experiment data of 1137 compounds. The heat capacity can be calculated by summating the contributions of the elements and chemical bond groups. The two methods were compared with existing group contribution methods, such as Chickos, Zabransky-Ruzicka, and Zdenka Kolska. The results show that those new estimation methods' overall average relative deviations were 5.81% and 5.71%, which were lower than the other three methods. Those methods were more straightforward in compound splitting.Those new methods can be used to estimate the liquid heat capacity of silicon-containing compounds,which the other three methods cannot estimate. The new methods are more accessible, broader, and more accurate. Therefore, this research has important scientific significance and vast application prospects.
基金supported by the National Natural Science Foundation of China(22175070,22293041,51902081,and 21871106)Key Fund in Hebei Province Department of Education China(ZD2022042)。
文摘Oxygen anion redox reaction provides a high theoretical capacity for Li-rich manganese-based cathodes.However,irreversible surface oxygen release often results in further oxygen loss and exacerbates the decomposition of the electrolyte,which could reduce the capacity contribution from the anionic redox and produce more acidic substances to corrode the surface of the material.In this paper,the surface oxygen release is suppressed by moderating oxygen anion redox activity via constructing chemical bonds between M(M=Fe and La)in LaFeO_(3)and surface oxygen anions of Li_(1.2)Mn_(0.6)Ni_(0.2)O_(2).The constructed interface layer stabilizes the surface lattice oxygen and retards the electrolyte from being attacked by the nucleophilic oxygen generated in the process of oxygen release,as evidenced by Differential Electrochemical Mass Spectrometry(DEMS)and X-ray Photoelectron Spectroscopy(XPS)detections.Moreover,in the charge and discharge process,the formed FeF_(3),located at the cathode electrolyte interfacial layer,is conducive to the stability of the cathode surface.The modified Li_(1.2)Mn_(0.6)Ni_(0.2)O_(2)electrode with 3 wt%LaFeO_(13)exhibits a high specific capacity of 189.5 mA h g-at 1C(200 mA g^(-1))after 150 cycles with capacity retentions of 96.6%,and 112.6 mA h g^(-1)(84.7%)at 5C after 200 cycles higher than the pristine sample.This study provides a rational design chemical bonding method to suppress the oxygen release from the cathode surface and enhance cyclic stability.
文摘The aim of this study is to examine the unsteady hydromagnetic flow of non-Newtonian nanofluid past a stretching sheet in the presence of variable magnetic field and chemical reaction. The system of non-linear partial differential equations governing the flow was solved using finite difference numerical approximation method. The resulting numerical schemes were simulated in MATLAB software. Furthermore, the skin-friction coefficient, Sherwood number, and Nusselt number have been presented in tabular form and discussed. The findings demonstrated that increasing Reynolds number increases velocity profiles while increasing permeability parameter, suction parameter and angle of inclination for the applied magnetic field reduces the velocity profiles of the fluid flow. Temperature of the fluid increases as the angle of inclination, magnetic number, Reynolds number and Eckert number increase but decreases as Prandtl number increases. Induced magnetic field profiles decrease as magnetic Prandtl number and suction parameter increase. Concentration profiles decrease as the chemical reaction parameter and Schmidt number increase but increase as the Soret number increases. The study is significant because fluid flow and heat transfer mechanisms with the variable magnetic considerations play an important role in magnetohydrodynamic generator or dynamo and magnetohydrodynamic pumps, nuclear reactors, vehicle thermal control, heat exchangers, cancer therapy, wound treatment and hyperthermia.
基金support and input from AFS 4F Research Committee.Instrumentation was provided by Dr.H.Makino from Sintokogio,LtdG.Hall and P.Thannhauser from Western Michigan University,for their technical support
文摘Chemically bonded sand cores and molds are more commonly referred to as precision sand systems in the high production automotive powertrain sector. Their behavior in contact with molten metal can lead to casting defects. Consequently, the interaction is of great interest and an important part of metal casting technology. The American Foundry Society(AFS) sand testing is based on physical, mechanical, thermal and chemical properties of the sand system. Foundry engineers have long known that certain AFS sand tests provide limited information regarding control of molding and casting quality. The inadequacy is due to the fact that sand casting processes are inherently thermo-mechanical, thermo-chemical and thermo-physical. Non-standard foundry sand testing has proven useful for laboratory measurement of these characteristics in foundry sand using a disc-shaped specimen. Similarly, the equivalent disc-shaped specimens are used for casting trials. In order to accomplish near-net-shape casting with minimal defects, it is necessary to understand both the properties of the sand system, as well as the interface of molten metal when different binders, additives and/or refractory coatings are used. The methodology for the following non-standard chemically bonded sand tests is described:(1) disc transverse;(2) impact;(3) modified permeability;(4) abrasion;(5) thermal distortion;(6) quick loss on ignition. The data related to the non-standard sand tests were analyzed and interpreted. The test results indicate that there is relatively lower test-to-test variability with the disc-shaped specimens. The non-standard tests were able to discriminate between the chemically bonded polyurethane cold box sand specimens. Further studies should be conducted on various other sand and binder systems as well as on different specimen thicknesses.
基金Project (60571043) supported by the National Natural Science Foundation of ChinaProject (11JJ2002) supported by the Natural Science Foundation of Hunan Province, China
文摘The electronic structures, chemical bonding and elastic properties of the tetragonal phase BiOCuS were investigated by using density-functional theory (DFT) within generalized gradient approximation (GGA). The calculated energy band structures show that the tetragonal phase BiOCuS is an indirect semiconductor with the calculated band gap of about 0.503 eV. The density of states (DOS) and the partial density of states (PDOS) calculations show that the DOS near the Fermi level is mainly from the Cu-3d state. Population analysis suggests that the chemical bonding in BiOCuS has predominantly ionic character with mixed covalent-ionic character. Basic physical properties, such as lattice constant, bulk modulus, shear modulus, elastic constants, were calculated. The elastic modulus and Poisson ratio were also predicted. The results show that tetragonal phase BiOCuS is mechanically stable and behaves in a ductile manner.
基金Project(11271121)supported by the National Natural Science Foundation of ChinaProject(11JJ2002)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(11K038)supported by Key Laboratory of High Performance Computing and Stochastic Information Processing of Hunan Province,ChinaProject(2013GK3130)supported by the Scientific and Technological Plan Project of Hunan Province,China
文摘The electronic structures, chemical bonding and elastic properties of the Co2P-type structure phase ultra-incompressible Re2P (orthorhombic phase) were investigated by density-functional theory (DFT) within generalized gradient approximation (GGA). The calculated energy band structures show that the orthorhombic structure phase Re2P is metallic material. The density of state (DOS) and the partial density of state (PDOS) calculations show that the DOS near the Fermi level is mainly from the Re-5d state. Population analysis suggests that the chemical bonding in Re2P has predominantly covalent character with mixed covalent-ionic character. Basic physical properties, such as lattice constant, bulk modulus, shear modulus, and elastic constants Cij, were calculated. The elastic modulus and Poisson ratio were also predicted. The results show that the Co2P-type structure phase Re2P is mechanically stable and behaves in a brittle manner.
基金Project(50474051)supported by the National Natural Science Foundation of China
文摘The structural parameters, chemical bonding and elastic properties of the tetragonal phase quaternary arsenide oxides YZnAsO and LaZnAsO were investigated by using density-functional theory (DFT) within generalized gradient approximation (GGA). The GGA calculated structural parameters are in agreement with the experimental results. Population analysis suggests that the chemical bonding in YZnAsO and LaZnAsO can be classified as a mixture of ionic and covalent characteristic. Single-crystal elastic constants were calculated and the polycrystalline elastic modules were estimated according to Voigt, Reuss and Hill's approximations (VRH). The result shows that both YZnAsO and LaZnAsO are relatively soft materials exhibiting ductile behavior. The calculated polycrystalline elastic anisotropy result shows that LaZnAsO is more anisotropy in compressibility and YZnAsO is more anisotropy in shear.
文摘The relation among electronic structure, chemical bond and thermoelectric property of Ca3 Co2 O6 and Ni-doped was studied by density function theory and discrete variation method(DFT-DVM). The results indicate that the highest valence band( HVB )attd the lowest conduction band( LCB ) are mainly attribuled to Co3d, Ni3d and O2p atomic orbitals. The property of a semiconductor is shown from the gap between HVB and LCB. The gap of Ni-doped one is less than that of Ca3 Co2 O6. The non-metal bond or ceramic characteristic of Ni-doped one is weaker than that of Ca3 Co2 O6, but the metal characteristics of Ni-doped one are stronger than those of Ca3 Co2 O6. The thermoelectric property should be improved by adding Ni element into the system of Ca3 Co2 O6 .
基金Project supported by the National Natural Science Foundation of China (20471012), Foundation for the Author of National Excellent Doctoral Dissertation of China (200322), Research Fund for the Doctoral Program of Higher Education (20040141004) and Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry
文摘A novel method was proposed to calculate the crystal morphology (or growth habit) on the basis of chemical bond analysis. All constituent chemical bonds were distinguished as relevant and independent bonds according to their variations during the crystallization process. By employing the current method, the influence of specific growth conditions on the crystal morphology can be considered in the structure analysis process. The ideal morphologies of both KDP (KH2PO4) and ADP (NH4H2PO4) crystals were calculated and compared with our obtained crystallites at room temperature, which validates the present calculation method very well.
文摘Titanium diboride was calculated by the density function and discrete variational (DFT-DVM) method to study the relation between structure and properties.Titanium and its first-nearest boron atoms form a strong covalent bond,so TiB 2 has high melting point,hardness and chemical stability.Titanium atom releases two electrons to form Ti 2+ ions,and a boron atom gets one electron to come into B- ion.B- takes the sp2 hybrid and forms σ bonds to link other boron atoms in the same layer.The other one 2p z orbital of every B- ion in the same layer interacts each other to form the π molecular orbital,so TiB 2 has fine electrical property.The calculated density of state is close to the result of XPS experiment of TiB 2.Mainly Ti3d and B2p atomic orbitals contribute the total DOS near the Fermi level.
文摘The relation among electronic structure, chemical bond and property of Ti3SiC2 and Al-doped was studied by density function and discrete variation ( DFT- DVM) method. When Al element is added into Ti3 SiC2 , there is a less difference of ionic bond, which does not play a leading role to influent the properties. After adding Al, the covalent bond of Al and the near Ti becomes somewhat weaker, but the covalent bond of Al and the Si in the same layer is obviously stronger than that of Si and Si before adding. Therefore, in preparation of Ti3 SiC2 , adding a proper quantity of Al can promote the formation of Ti3 SiC2 . The density of stnte shows that there is a mixed conductor character in both of Ti3 SiC2 and adding Al element. Ti3 SiC2 is with more tendencies to form a semiconductor. The total density of state near Fermi lever after adding Al is larger than that before adding, so the electric conductivity may increase after adding Al.
文摘Calcium aluminate cement bonded corundum castable specimens were prepared using brown fused corundum (8 - 5, 5 - 3, 3 - 1 mm ) , white fused corundum ( ≤ 1, ≤0. 045 mm), micro-sized α-Al2O3 and microsilica as starting materials. This work focused on investigating the relationship between the bond change in the castable matrix and the strength of the castable with 5 mass% microsilica or without microsilica after heat treatment at 110, 800 and 1 000 ℃, respectively. Chemical bond changes between the microsilica and hy- drates of calcium aluminate cement after drying at 110 ℃ or firing at 800 ℃ were investigated by XPS and FTIR. The results show that Si-O-Al bonds form be- tween the microsilica and hydrates of calcium aluminate cement after drying at 110 ℃ or firing at 800 ℃. Therefore, the increased strength of castable specimens is attributed to the formation of Si-O-Al bonds from 110 ℃ to 800 ℃.
文摘The detection by the author of real magnetic charges, as well as true antielectrons in of atomic structures allowed him to establish that atomic shells, as well as shells of nucleons are electromagnetic, and not electronic. Namely electromagnetic shells are the sources of gravitational field which is the vortex electromagnetic field. The elementary source of gravitational field is the electromagnetic quasiparticle (S-Graviton) which consists of two coupled dipoles (the magnetic and electric) rotating in antiphase in the same atomic or nucleonic orbit. Electrons in atomic shells are rigidly embedded in the compositions of S-Gravitons and, as a rule, cannot individually participate, for example, in processes of interatomic chemical bonding. Depending on the vector conditions the gravitational fields can be both paragravitational (PGF) so and ferrogravitational (FGF). The overwhelming number of atomic shells and all shells nucleons emit PGF. Between the masses (bodies, atoms, nucleons, etc.) emitting of PGF is realized a force of gravitational “Dark energy” pressing masses to each other. It is the compression of masses by forces of the gravitational “Dark energy” that lies at basis Physics of chemical bond. Depending on implementation in atoms of the effects intra-atomic gravitational shielding/lensing (IAGS/L) discovered and investigated by the author, the gravitational interatomic bonding mechanisms are divided into two groups: non-covalent bonds (IAGS effect) and covalent bonds (IAGL effect). Within the framework of the gravitational bond mechanism of the latter group which is implemented with participation paragravitational orbitals, such chemical concept as valence acquires a real physical meaning. The replacing the erroneous electronic concept of chemical bonding by the gravitational concept implies replacing the notion “electronegativity” of element by the notion the “gravitational activity” while maintaining existing quantitative ability of atoms in molecules to attract atoms of other elements.
基金supported by the China Agriculture Research System(CARS-01-17)the National Key Research&Development Plan of China(Grant No.2016YFD0200804)+1 种基金Zhejiang Provincial Key Research&Development Plan(Grant No.2015C02014)State Key Laboratory Breeding Base for Zhejiang Sustainable Pest Control(Grant No.2010DS700124ZZ1601)
文摘Chemical pesticides play crucial roles in the management of crop diseases and pests. However, excessive and irrational use of pesticides has become a major concern and obstacle to sustainable agriculture. As a result, the quality and security of agricultural products are reduced, and the ecological and environmental integrities are threatened. Recently, environment-friendly pest management measures have been introduced and adopted to manage rice insect pests and reduce the use of insecticides. This paper reviewed the advancements in development and application of non-chemical technologies for insect pest management during rice production in China.
基金Supported by the National Natural Science Foundation of China(11071272,10831001,11171279,11101087)the Young Talent Foundation of Fuzhou University(XRC-1154)
文摘The atom-bond connectivity(ABC) index provides a good model for the stability of linear and branched alkanes as well as the strain energy of cycloalkanes,which is defined as ABC(G) =∑ uv∈E(G) √d u+dv-2 dudv,where du denotes the degree of a vertex u in G.A chemical graph is a graph in which no vertex has degree greater than 4.In this paper,we obtain the sharp upper and lower bounds on ABC index of chemical bicyclic graphs.
基金Project(50374078) supported by the National Natural Science Foundation of China Project(G1999064902) supported bythe National Basic Research Programof China
文摘The dipole moment, total energy, atomic charge, orbital population and orbital energy of four representative combination models of the favorable growth unit Al6(OH)18(H2O)6 of Al(OH)3 crystals precipitating are calculated by ab initio at RHF/STO-3G, RHF/3-21G, RHF/6-31G levels and DFT at RB3LYP/STO-3G, RB3LYP/3-21G, RB3LYP/6-31G levels with Dipole & Sphere solvent model. The effect of various combination models on Van der Waals force is analyzed using dipole moment and molecular radius, and that on chemical bond force is analyzed using total energy, orbital population and orbital energy.
基金Funded by the National Major Scientific and Technological Special Project during the Twelfth Five-year Plan Period(No.2009ZX02030-1)the National Natural Science Foundation of China(No.51205387)the Science and Technology Commission of Shanghai(No.11nm0500300),the Science and Technology Commission of Shanghai(No.14XD1425300)
文摘Non-spherical colloidal silica nanoparticle was prepared by a simple new method, and its particle size distribution and shape morphology were characterized by dynamic light scattering(DLS) and the Focus Ion Beam(FIB) system. This kind of novel colloidal silica particles can be well used in chemical mechanical polishing(CMP) of sapphire wafer surface. And the polishing test proves that non-spherical colloidal silica slurry shows much higher material removal rate(MRR) with higher coefficient of friction(COF) when compared to traditional large spherical colloidal silica slurry with particle size 80 nm by DLS. Besides, sapphire wafer polished by non-spherical abrasive also has a good surface roughness of 0.460 6 nm. Therefore, non-spherical colloidal silica has shown great potential in the CMP field because of its higher MRR and better surface roughness.
基金supported by ‘‘Strategic Priority Research Program’’of the Chinese Academy of Sciences(No.XDA02020000)the National Natural Science Foundation of China(Nos.21573273,21501189)the support from Hundred Talents Program(CAS)
文摘Analyses of chemical bonding and geometric structures in species with chalcogen elements EThF_2(E=O,S,Se,Te) are performed by the density functional theory. Kohn–Sham molecular orbitals and Th–E bond lengths of these species both indicate multiple bond character for the terminal chalcogen complexes. This is also confirmed by natural bond orbital analyses using the oneelectron density matrix generated by relativistic density functional calculations. Theoretical analyses indicate that electron donation from E to Th increases down the chalcogen group(O<S<Se<Te). These molecules can serve as examples of multiple bonding between actinide elements and selenium or tellurium.