The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove...The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove two global existence results on strong solutions of isentropic compressible Navier-Stokes equations. The first result shows only the existence. And the second one shows the existence and uniqueness result based on the first result, but the uniqueness requires some compatibility condition.展开更多
This paper studies the strong law of large numbers and the Shannom-McMillan theorem for Markov chains field on Cayley tree. The authors first prove the strong law of large number on the frequencies of states and order...This paper studies the strong law of large numbers and the Shannom-McMillan theorem for Markov chains field on Cayley tree. The authors first prove the strong law of large number on the frequencies of states and orderd couples of states for Markov chains field on Cayley tree. Then they prove the Shannon-McMillan theorem with a.e. convergence for Markov chains field on Cayley tree. In the proof, a new technique in the study the strong limit theorem in probability theory is applied.展开更多
A homotopy analysis method(HAM)is presented for the primary resonance of multiple degree-of-freedom systems with strong non-linearity excited by harmonic forces.The validity of the HAM is independent of the existenc...A homotopy analysis method(HAM)is presented for the primary resonance of multiple degree-of-freedom systems with strong non-linearity excited by harmonic forces.The validity of the HAM is independent of the existence of small parameters in the considered equation.The HAM provides a simple way to adjust and control the convergence region of the series solution by means of an auxiliary parameter.Two examples are presented to show that the HAM solutions agree well with the results of the modified Linstedt-Poincar'e method and the incremental harmonic balance method.展开更多
In order to accurately simulate strong three-dimensional (3-D) free surface flows and sediment transport, the fully 3- D non-hydrostatic pressure models are developed based on the incompressible Navier-Stokes equati...In order to accurately simulate strong three-dimensional (3-D) free surface flows and sediment transport, the fully 3- D non-hydrostatic pressure models are developed based on the incompressible Navier-Stokes equations and convection-diffusion equation of sediment concentration with the mixing triangle and quadrilateral grids. The governing equations are discretized with the unstructured finite volume method in order to provide conservation properties of mass and momentum, and flexibility with practical application. It is shown that it is first-order accurate on nonuniform plane two-dimensional (2-D) grids and second-order accurate on uniform plane grids. A third-order approximation of the vertical velocity at the top-layer is applied. In such a way, free surface zero stress boundary condition is satisfied maturely, and very few vertical layers are needed to give an accurate solution even for complex discontinuous flow and short wave simulation. The model is applied to four examples to simulate strong 3-D free surface flows and sediment transport where non-hydrostatic pressures have a considerable effect on the velocity field. The newly developed model is verified against analytical solutions with an excellent agreement.展开更多
In this paper, we study the existence of exponential attractors for strongly damped wave equations with a time-dependent driving force. To this end, the uniform H?lder continuity is established to the variation of the...In this paper, we study the existence of exponential attractors for strongly damped wave equations with a time-dependent driving force. To this end, the uniform H?lder continuity is established to the variation of the process in the phase apace. In a certain parameter region, the exponential attractor is a uniformly exponentially attracting time-dependent set in the phase apace, and is finite-dimensional no matter how complex the dependence of the external forces on time is. On this basis, we also obtain the existence of the infinite-dimensional uniform exponential attractor for the system.展开更多
Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmo...Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmonic nanocavities play a significant role due to their ability to confine light in an ultrasmall volume.Additionally,two-dimensional transition metal dichalcogenides(TMDCs) have a significant exciton binding energy and remain stable at ambient conditions,making them an excellent alternative for investigating light-matter interactions.As a result,strong plasmon-exciton coupling has been reported by introducing a single metallic cavity.However,single nanoparticles have lower spatial confinement of electromagnetic fields and limited tunability to match the excitonic resonance.Here,we introduce the concept of catenary-shaped optical fields induced by plasmonic metamaterial cavities to scale the strength of plasmon-exciton coupling.The demonstrated plasmon modes of metallic metamaterial cavities offer high confinement and tunability and can match with the excitons of TMDCs to exhibit a strong coupling regime by tuning either the size of the cavity gap or thickness.The calculated Rabi splitting of Au-MoSe_2 and Au-WSe_2 heterostructures strongly depends on the catenary-like field enhancement induced by the Au cavity,resulting in room-temperature Rabi splitting ranging between 77.86 and 320 me V.These plasmonic metamaterial cavities can pave the way for manipulating excitons in TMDCs and operating active nanophotonic devices at ambient temperature.展开更多
Non-flow aqueous zinc-bromine batteries without auxiliary components(e.g.,pumps,pipes,storage tanks)and ion-selective membranes represent a cost-effective and promising technology for large-scale energy storage.Unfort...Non-flow aqueous zinc-bromine batteries without auxiliary components(e.g.,pumps,pipes,storage tanks)and ion-selective membranes represent a cost-effective and promising technology for large-scale energy storage.Unfortunately,they generally suffer from serious diffusion and shuttle of polybromide(Br^(-),Br^(3-))due to the weak physical adsorption between soluble polybromide and host carbon materials,which results in low energy efficiency and poor cycling stability.Here,we develop a novel self-capture organic bromine material(1,10-bis[3-(trimethylammonio)propyl]-4,4'-bipyridinium bromine,NVBr4)to successfully realize reversible solid complexation of bromide components for stable non-flow zinc-bromine battery applications.The quaternary ammonium groups(NV^(4+)ions)can effectively capture the soluble polybromide species based on strong chemical interaction and realize reversible solid complexation confined within the porous electrodes,which transforms the conventional“liquid-liquid”conversion of soluble bromide components into“liquid-solid”model and effectively suppresses the shuttle effect.Thereby,the developed non-flow zinc-bromide battery provides an outstanding voltage platform at 1.7 V with a notable specific capacity of 325 mAh g^(-1)NVBr4(1 A g^(-1)),excellent rate capability(200 mAh g^(-1)NVBr4 at 20 A g^(-1)),outstanding energy density of 469.6 Wh kg^(-1)and super-stable cycle life(20,000 cycles with 100%Coulombic efficiency),which outperforms most of reported zinc-halogen batteries.Further mechanism analysis and DFT calculations demonstrate that the chemical interaction of quaternary ammonium groups and bromide species is the main reason for suppressing the shuttle effect.The developed strategy can be extended to other halogen batteries to obtain stable charge storage.展开更多
This paper considers the existence of uniform attractors for a non-autonomous thermoviscoelastic equation with strong damping in a bounded domain Ω⊆Rn(n≥1) by establishing the uniformly asymptotic compactn...This paper considers the existence of uniform attractors for a non-autonomous thermoviscoelastic equation with strong damping in a bounded domain Ω⊆Rn(n≥1) by establishing the uniformly asymptotic compactness of the semi-process generated by the global solutions.展开更多
This paper investigates some conditions which imply the strong laws of large numbers for Banach space valued random variable sequences. Some generalizations of the Marcinkiewicz-Zygmund theorem and the Hoffmann-J?rgen...This paper investigates some conditions which imply the strong laws of large numbers for Banach space valued random variable sequences. Some generalizations of the Marcinkiewicz-Zygmund theorem and the Hoffmann-J?rgensen and Pisier theorem are obtained. Key words strong law of large numbers - Banach space valued random variable sequence - p-smoothable Banach space CLC number O 211.4 - O 211.6 Foundation item: Supported by the National Natural Science Foundation of China (10071058)Biography: Gan Shi-xin (1939-), male, Professor, research direction: martingale theory, probability limiting theory and Banach space geometry theory.展开更多
Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-gr...Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-group metal.Herein,based on the idea of strong metal–support interaction(SMSI)regulation,Ru/TiN catalysts with different degrees of TiN overlayer over Ru nanoparticles were fabricated,which were applied to the alkaline electrolytic water.Characterizations reveal that the TiN overlayer would gradually encapsulate the Ru nanoparticles and induce more electron transfer from Ru nanoparticles to TiN support by the Ru–N–Ti bond as the SMSI degree increased.Further study shows that the exposed Ru–TiN interfaces greatly promote the H_(2) desorption capacity.Thus,the Ru/TiN-300 with a moderate SMSI degree exhibits excellent HER performance,with an overpotential of 38 mV at 10 mA cm^(−2).Also,due to the encapsulation role of TiN overlayer on Ru nanoparticles,it displays super long-term stability with a very slight potential change after 24 h.This study provides a deep insight into the influence of the SMSI effect between Ru and TiN on HER and offers a novel approach for preparing efficient and stable HER electrocatalysts through SMSI engineering.展开更多
The non-stationary buffeting response of long span suspension bridge in time domain under strong wind loading is computed. Modeling method for generating non-stationary fluctuating winds with probabilistic model for n...The non-stationary buffeting response of long span suspension bridge in time domain under strong wind loading is computed. Modeling method for generating non-stationary fluctuating winds with probabilistic model for non-stationary strong wind fields is first presented. Non-stationary wind forces induced by strong winds on bridge deck and tower are then given a brief introduction. Finally,Non-stationary buffeting response of Pulite Bridge in China,a long span suspension bridge,is computed by using ANSYS software under four working conditions with different combination of time-varying mean wind and time-varying variance. The case study further confirms that it is necessity of considering non-stationary buffeting response for long span suspension bridge under strong wind loading,rather than only stationary buffeting response.展开更多
A method to construct strongly non regular order bounded operators from a classical Banach lattice C into any separable Banach lattice F without Dedekind σ completeness is presented in this paper. A r...A method to construct strongly non regular order bounded operators from a classical Banach lattice C into any separable Banach lattice F without Dedekind σ completeness is presented in this paper. A result concerning the order bounded norm and the regular norm is also contained.展开更多
Fisher-Tippet-Gnedenko classical theory shows that the normalized maximum of n iid random variables with distribution F belonging to a very wide class of functions, converges in law to an extremal distribution H, that...Fisher-Tippet-Gnedenko classical theory shows that the normalized maximum of n iid random variables with distribution F belonging to a very wide class of functions, converges in law to an extremal distribution H, that is determined by the tail of F. Extensions of this theory from the iid case to stationary and weak dependent sequences are well known from the work of Leadbetter, Lindgreen and Rootzén. In this paper, we present a very simple class of random processes that runs from iid sequences to non-stationary and strongly dependent processes, and we study the asymptotic behavior of its normalized maximum. More interesting, we show that when the process is strongly dependent, the asymptotic distribution is no longer an extremal one, but a mixture of extremal distributions. We present very simple theoretical and simulated examples of this result. This provides a simple framework to asymptotic approximations of extremes values not covered by classical extremal theory and its well-known extensions.展开更多
We investigate the nature of the strong coupling constant and related physics.Through the analysis of accumulated experimental data around the world,we employ the ability of machine learning to unravel its physical la...We investigate the nature of the strong coupling constant and related physics.Through the analysis of accumulated experimental data around the world,we employ the ability of machine learning to unravel its physical laws.The result of our efforts is a formula that captures the expansive panorama of the distribution of the strong coupling constant across the entire energy range.展开更多
Due to the technical fault,a wrong version of the paper was uploaded.The content of the article was not affected,but the layout of the article was affected.The original article has been corrected.
In the original publication the third author name is published incorrectly as“Hayatdavoodi Masoud”.The correct author name should be read as“Masoud Hayatdavoodi”.The correct author name is available in this correc...In the original publication the third author name is published incorrectly as“Hayatdavoodi Masoud”.The correct author name should be read as“Masoud Hayatdavoodi”.The correct author name is available in this correction.展开更多
In this article we improve a goodness-of-fit test, of the Kolmogorov-Smirnov type, for equally distributed- but not stationary-strongly dependent data. The test is based on the asymptotic behavior of the empirical pro...In this article we improve a goodness-of-fit test, of the Kolmogorov-Smirnov type, for equally distributed- but not stationary-strongly dependent data. The test is based on the asymptotic behavior of the empirical process, which is much more complex than in the classical case. Applications to simulated data and discussion of the obtained results are provided. This is, to the best of our knowledge, the first result providing a general goodness of fit test for non-weakly dependent data.展开更多
In public goods games, punishments and rewards have been shown to be effective mechanisms for maintaining individualcooperation. However, punishments and rewards are costly to incentivize cooperation. Therefore, the g...In public goods games, punishments and rewards have been shown to be effective mechanisms for maintaining individualcooperation. However, punishments and rewards are costly to incentivize cooperation. Therefore, the generation ofcostly penalties and rewards has been a complex problem in promoting the development of cooperation. In real society,specialized institutions exist to punish evil people or reward good people by collecting taxes. We propose a strong altruisticpunishment or reward strategy in the public goods game through this phenomenon. Through theoretical analysis and numericalcalculation, we can get that tax-based strong altruistic punishment (reward) has more evolutionary advantages thantraditional strong altruistic punishment (reward) in maintaining cooperation and tax-based strong altruistic reward leads toa higher level of cooperation than tax-based strong altruistic punishment.展开更多
Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of nob...Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of noble metals.This study demonstrates a catalyst preparation method to modulate a weak encapsulation of Pt metal nanoparticles(NPs)with the supported TiO_(2),achieving the moderate suppression of SMSI effects.The introduction of silica inhibits this encapsulation,as reflected in the characterization results such as XPS and HRTEM,while the Ti^(4+) to Ti^(3+) conversion due to SMSI can still be found on the support surface.Furthermore,the hydrogenation of cinnamaldehyde(CAL)as a probe reaction revealed that once this encapsulation behavior was suppressed,the adsorption capacity of the catalyst for small molecules like H_(2) and CO was enhanced,which thereby improved the catalytic activity and facilitated the hydrogenation of CAL.Meanwhile,the introduction of SiO_(2) also changed the surface structure of the catalyst,which inhibited the occurrence of the acetal reaction and improved the conversion efficiency of C=O and C=C hydrogenation.Systematic manipulation of SMSI formation and its consequence on the performance in catalytic hydrogenation reactions are discussed.展开更多
文摘The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove two global existence results on strong solutions of isentropic compressible Navier-Stokes equations. The first result shows only the existence. And the second one shows the existence and uniqueness result based on the first result, but the uniqueness requires some compatibility condition.
文摘This paper studies the strong law of large numbers and the Shannom-McMillan theorem for Markov chains field on Cayley tree. The authors first prove the strong law of large number on the frequencies of states and orderd couples of states for Markov chains field on Cayley tree. Then they prove the Shannon-McMillan theorem with a.e. convergence for Markov chains field on Cayley tree. In the proof, a new technique in the study the strong limit theorem in probability theory is applied.
基金supported by the Fundamental Research Funds for the Central Universities(No.N090405009)
文摘A homotopy analysis method(HAM)is presented for the primary resonance of multiple degree-of-freedom systems with strong non-linearity excited by harmonic forces.The validity of the HAM is independent of the existence of small parameters in the considered equation.The HAM provides a simple way to adjust and control the convergence region of the series solution by means of an auxiliary parameter.Two examples are presented to show that the HAM solutions agree well with the results of the modified Linstedt-Poincar'e method and the incremental harmonic balance method.
基金financially supported by the Science and Technology Project of the Ministry of Transport(Grant No.2013328352570)
文摘In order to accurately simulate strong three-dimensional (3-D) free surface flows and sediment transport, the fully 3- D non-hydrostatic pressure models are developed based on the incompressible Navier-Stokes equations and convection-diffusion equation of sediment concentration with the mixing triangle and quadrilateral grids. The governing equations are discretized with the unstructured finite volume method in order to provide conservation properties of mass and momentum, and flexibility with practical application. It is shown that it is first-order accurate on nonuniform plane two-dimensional (2-D) grids and second-order accurate on uniform plane grids. A third-order approximation of the vertical velocity at the top-layer is applied. In such a way, free surface zero stress boundary condition is satisfied maturely, and very few vertical layers are needed to give an accurate solution even for complex discontinuous flow and short wave simulation. The model is applied to four examples to simulate strong 3-D free surface flows and sediment transport where non-hydrostatic pressures have a considerable effect on the velocity field. The newly developed model is verified against analytical solutions with an excellent agreement.
文摘In this paper, we study the existence of exponential attractors for strongly damped wave equations with a time-dependent driving force. To this end, the uniform H?lder continuity is established to the variation of the process in the phase apace. In a certain parameter region, the exponential attractor is a uniformly exponentially attracting time-dependent set in the phase apace, and is finite-dimensional no matter how complex the dependence of the external forces on time is. On this basis, we also obtain the existence of the infinite-dimensional uniform exponential attractor for the system.
基金supported by the Australian Research Council (DP200101353)。
文摘Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmonic nanocavities play a significant role due to their ability to confine light in an ultrasmall volume.Additionally,two-dimensional transition metal dichalcogenides(TMDCs) have a significant exciton binding energy and remain stable at ambient conditions,making them an excellent alternative for investigating light-matter interactions.As a result,strong plasmon-exciton coupling has been reported by introducing a single metallic cavity.However,single nanoparticles have lower spatial confinement of electromagnetic fields and limited tunability to match the excitonic resonance.Here,we introduce the concept of catenary-shaped optical fields induced by plasmonic metamaterial cavities to scale the strength of plasmon-exciton coupling.The demonstrated plasmon modes of metallic metamaterial cavities offer high confinement and tunability and can match with the excitons of TMDCs to exhibit a strong coupling regime by tuning either the size of the cavity gap or thickness.The calculated Rabi splitting of Au-MoSe_2 and Au-WSe_2 heterostructures strongly depends on the catenary-like field enhancement induced by the Au cavity,resulting in room-temperature Rabi splitting ranging between 77.86 and 320 me V.These plasmonic metamaterial cavities can pave the way for manipulating excitons in TMDCs and operating active nanophotonic devices at ambient temperature.
基金the Guangdong Basic and Applied Basic Research Foundation(grant number:2019A1515011819,2021B1515120004)National Natural Science Foundation of China(22005207)Open Research Fund of Songshan Lake Materials Laboratory(2021SLABFN04).
文摘Non-flow aqueous zinc-bromine batteries without auxiliary components(e.g.,pumps,pipes,storage tanks)and ion-selective membranes represent a cost-effective and promising technology for large-scale energy storage.Unfortunately,they generally suffer from serious diffusion and shuttle of polybromide(Br^(-),Br^(3-))due to the weak physical adsorption between soluble polybromide and host carbon materials,which results in low energy efficiency and poor cycling stability.Here,we develop a novel self-capture organic bromine material(1,10-bis[3-(trimethylammonio)propyl]-4,4'-bipyridinium bromine,NVBr4)to successfully realize reversible solid complexation of bromide components for stable non-flow zinc-bromine battery applications.The quaternary ammonium groups(NV^(4+)ions)can effectively capture the soluble polybromide species based on strong chemical interaction and realize reversible solid complexation confined within the porous electrodes,which transforms the conventional“liquid-liquid”conversion of soluble bromide components into“liquid-solid”model and effectively suppresses the shuttle effect.Thereby,the developed non-flow zinc-bromide battery provides an outstanding voltage platform at 1.7 V with a notable specific capacity of 325 mAh g^(-1)NVBr4(1 A g^(-1)),excellent rate capability(200 mAh g^(-1)NVBr4 at 20 A g^(-1)),outstanding energy density of 469.6 Wh kg^(-1)and super-stable cycle life(20,000 cycles with 100%Coulombic efficiency),which outperforms most of reported zinc-halogen batteries.Further mechanism analysis and DFT calculations demonstrate that the chemical interaction of quaternary ammonium groups and bromide species is the main reason for suppressing the shuttle effect.The developed strategy can be extended to other halogen batteries to obtain stable charge storage.
文摘This paper considers the existence of uniform attractors for a non-autonomous thermoviscoelastic equation with strong damping in a bounded domain Ω⊆Rn(n≥1) by establishing the uniformly asymptotic compactness of the semi-process generated by the global solutions.
文摘This paper investigates some conditions which imply the strong laws of large numbers for Banach space valued random variable sequences. Some generalizations of the Marcinkiewicz-Zygmund theorem and the Hoffmann-J?rgensen and Pisier theorem are obtained. Key words strong law of large numbers - Banach space valued random variable sequence - p-smoothable Banach space CLC number O 211.4 - O 211.6 Foundation item: Supported by the National Natural Science Foundation of China (10071058)Biography: Gan Shi-xin (1939-), male, Professor, research direction: martingale theory, probability limiting theory and Banach space geometry theory.
基金supported by the National Natural Science Foundation of China(Grant Nos.22075159,22002066)Shandong Taishan Scholars Project(Grant Nos.ts20190932,tsqn202103058)+1 种基金Open Fund of Hubei Key Laboratory of Processing and Application of Catalytic Materials(Grant No.202203404)Postdoctoral Applied Research Project in Qingdao,and the Youth Innovation Team Project of Shandong Provincial Education Department(Grant No.2019KJC023).
文摘Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-group metal.Herein,based on the idea of strong metal–support interaction(SMSI)regulation,Ru/TiN catalysts with different degrees of TiN overlayer over Ru nanoparticles were fabricated,which were applied to the alkaline electrolytic water.Characterizations reveal that the TiN overlayer would gradually encapsulate the Ru nanoparticles and induce more electron transfer from Ru nanoparticles to TiN support by the Ru–N–Ti bond as the SMSI degree increased.Further study shows that the exposed Ru–TiN interfaces greatly promote the H_(2) desorption capacity.Thus,the Ru/TiN-300 with a moderate SMSI degree exhibits excellent HER performance,with an overpotential of 38 mV at 10 mA cm^(−2).Also,due to the encapsulation role of TiN overlayer on Ru nanoparticles,it displays super long-term stability with a very slight potential change after 24 h.This study provides a deep insight into the influence of the SMSI effect between Ru and TiN on HER and offers a novel approach for preparing efficient and stable HER electrocatalysts through SMSI engineering.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51408174)Anhui Provincial Natural Science Foundation(Grant No.1408085QE95)+1 种基金China Postdoctoral Science Foundation(Grant No.2013M540511 and 2015T80652)Key University Science Research Project of Anhui Province(Grant No.KJ2016A294)
文摘The non-stationary buffeting response of long span suspension bridge in time domain under strong wind loading is computed. Modeling method for generating non-stationary fluctuating winds with probabilistic model for non-stationary strong wind fields is first presented. Non-stationary wind forces induced by strong winds on bridge deck and tower are then given a brief introduction. Finally,Non-stationary buffeting response of Pulite Bridge in China,a long span suspension bridge,is computed by using ANSYS software under four working conditions with different combination of time-varying mean wind and time-varying variance. The case study further confirms that it is necessity of considering non-stationary buffeting response for long span suspension bridge under strong wind loading,rather than only stationary buffeting response.
文摘A method to construct strongly non regular order bounded operators from a classical Banach lattice C into any separable Banach lattice F without Dedekind σ completeness is presented in this paper. A result concerning the order bounded norm and the regular norm is also contained.
文摘Fisher-Tippet-Gnedenko classical theory shows that the normalized maximum of n iid random variables with distribution F belonging to a very wide class of functions, converges in law to an extremal distribution H, that is determined by the tail of F. Extensions of this theory from the iid case to stationary and weak dependent sequences are well known from the work of Leadbetter, Lindgreen and Rootzén. In this paper, we present a very simple class of random processes that runs from iid sequences to non-stationary and strongly dependent processes, and we study the asymptotic behavior of its normalized maximum. More interesting, we show that when the process is strongly dependent, the asymptotic distribution is no longer an extremal one, but a mixture of extremal distributions. We present very simple theoretical and simulated examples of this result. This provides a simple framework to asymptotic approximations of extremes values not covered by classical extremal theory and its well-known extensions.
基金supported by the National Natural Science Foundation of China(Grant Nos.12065014,12047501,12247101,and 12335001)the Natural Science Foundation of Gansu Province(Grant No.22JR5RA266)+5 种基金the West Light Foundation of Chinese Academy of Sciences(Grant No.21JR7RA201)supported by the China National Funds for Distinguished Young Scientists(Grant No.11825503)the National Key Research and Development Program of China(Grant No.2020YFA0406400)the 111 Project(Grant No.B20063)the fundamental Research Funds for the Central Universitiesthe Project for Top-Notch Innovative Talents of Gansu province。
文摘We investigate the nature of the strong coupling constant and related physics.Through the analysis of accumulated experimental data around the world,we employ the ability of machine learning to unravel its physical laws.The result of our efforts is a formula that captures the expansive panorama of the distribution of the strong coupling constant across the entire energy range.
文摘Due to the technical fault,a wrong version of the paper was uploaded.The content of the article was not affected,but the layout of the article was affected.The original article has been corrected.
文摘In the original publication the third author name is published incorrectly as“Hayatdavoodi Masoud”.The correct author name should be read as“Masoud Hayatdavoodi”.The correct author name is available in this correction.
文摘In this article we improve a goodness-of-fit test, of the Kolmogorov-Smirnov type, for equally distributed- but not stationary-strongly dependent data. The test is based on the asymptotic behavior of the empirical process, which is much more complex than in the classical case. Applications to simulated data and discussion of the obtained results are provided. This is, to the best of our knowledge, the first result providing a general goodness of fit test for non-weakly dependent data.
基金the National Natural Science Foun-dation of China(Grant No.71961003).
文摘In public goods games, punishments and rewards have been shown to be effective mechanisms for maintaining individualcooperation. However, punishments and rewards are costly to incentivize cooperation. Therefore, the generation ofcostly penalties and rewards has been a complex problem in promoting the development of cooperation. In real society,specialized institutions exist to punish evil people or reward good people by collecting taxes. We propose a strong altruisticpunishment or reward strategy in the public goods game through this phenomenon. Through theoretical analysis and numericalcalculation, we can get that tax-based strong altruistic punishment (reward) has more evolutionary advantages thantraditional strong altruistic punishment (reward) in maintaining cooperation and tax-based strong altruistic reward leads toa higher level of cooperation than tax-based strong altruistic punishment.
基金the National Natural Science Foundation of China(21576291,22003076)National Natural Science Foundation of China-Outstanding Youth foundation(22322814)the Fundamental Research Funds for the Central Universities(23CX03007A,22CX06012A)are gratefully acknowledge。
文摘Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of noble metals.This study demonstrates a catalyst preparation method to modulate a weak encapsulation of Pt metal nanoparticles(NPs)with the supported TiO_(2),achieving the moderate suppression of SMSI effects.The introduction of silica inhibits this encapsulation,as reflected in the characterization results such as XPS and HRTEM,while the Ti^(4+) to Ti^(3+) conversion due to SMSI can still be found on the support surface.Furthermore,the hydrogenation of cinnamaldehyde(CAL)as a probe reaction revealed that once this encapsulation behavior was suppressed,the adsorption capacity of the catalyst for small molecules like H_(2) and CO was enhanced,which thereby improved the catalytic activity and facilitated the hydrogenation of CAL.Meanwhile,the introduction of SiO_(2) also changed the surface structure of the catalyst,which inhibited the occurrence of the acetal reaction and improved the conversion efficiency of C=O and C=C hydrogenation.Systematic manipulation of SMSI formation and its consequence on the performance in catalytic hydrogenation reactions are discussed.