Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suf...Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.展开更多
The nonuniform distribution of interference spectrum in wavenumber k-space is a key issue to limit the imaging quality of Fourier-domain optical coherence tomography(FD-OCT).At present,the reconstruction quality at di...The nonuniform distribution of interference spectrum in wavenumber k-space is a key issue to limit the imaging quality of Fourier-domain optical coherence tomography(FD-OCT).At present,the reconstruction quality at different depths among a variety of processing methods in k-space is still uncertain.Using simulated and experimental interference spectra at different depths,the effects of common six processing methods including uniform resampling(linear interpolation(LI),cubic spline interpolation(CSI),time-domain interpolation(TDI),and K-B window convolution)and nonuniform sampling direct-reconstruction(Lomb periodogram(LP)and nonuniform discrete Fourier transform(NDFT))on the reconstruction quality of FD-OCT were quantitatively analyzed and compared in this work.The results obtained by using simulated and experimental data were coincident.From the experimental results,the averaged peak intensity,axial resolution,and signal-to-noise ratio(SNR)of NDFT at depth from 0.5 to 3.0mm were improved by about 1.9 dB,1.4 times,and 11.8 dB,respectively,compared to the averaged indices of all the uniform resampling methods at all depths.Similarly,the improvements of the above three indices of LP were 2.0 dB,1.4 times,and 11.7 dB,respectively.The analysis method and the results obtained in this work are helpful to select an appropriate processing method in k-space,so as to improve the imaging quality of FD-OCT.展开更多
For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on sys...For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on system between every consecutive output sampling instants,the actual fault function is transformed to obtain an equivalent fault model by using the integral mean value theorem,then the non-uniform sampling hybrid system is converted to continuous systems with timevarying delay based on the output delay method.Afterwards,an observer-based fault diagnosis filter with virtual fault is designed to estimate the equivalent fault,and the iterative learning regulation algorithm is chosen to update the virtual fault repeatedly to make it approximate the actual equivalent fault after some iterative learning trials,so the algorithm can detect and estimate the system faults adaptively.Simulation results of an electro-mechanical control system model with different types of faults illustrate the feasibility and effectiveness of this algorithm.展开更多
A Lactobacillus buchneri GBS3 strain isolated from the traditional Chinese pickles was used for the production of 3-phenyllactic acid(PLA), an important compound with antimicrobial activities against a wide species of...A Lactobacillus buchneri GBS3 strain isolated from the traditional Chinese pickles was used for the production of 3-phenyllactic acid(PLA), an important compound with antimicrobial activities against a wide species of grampositive and gram-negative bacteria and some fungi. The growth performance of this strain in the de Man, Rogosa and Sharpe(MRS) medium, the production of metabolites of valuable organic acids, and the biosynthesis of PLA using this strain as the whole-cell biocatalyst and phenylpyruvic acid(PPA) as the precursor, were investigated experimentally. The uniform design method with overlay sampling was developed for the optimization of the biotransformation conditions. The results showed that although it produced naturally lactic acid with the maximum concentration of 1.84 g·L^(-1) and PLA with the concentration of 0.015 g·L^(-1) after 66 to 72 h cultivation in MRS broth by fermentation, the present strain displayed an effective utilization ability by transforming PPA to PLA. By the uniform design method with overlay sampling for the design and optimization of transformation conditions, a maximum yield of 10.93 g·L^(-1) PLA with the mole conversion ratio of 83.07% from PPA to PLA was achieved under the optimized condition, i.e., 20 g·L^(-1) glucose, 270 g·L^(-1) cells, 13 g·L^(-1) PPA, pH 8.0 and the reaction time of 15 h, indicating that Lactobacillus buchneri GBS3 was an interesting strain for the biosynthesis of PLA via the microbial transformation. The prediction of PLA yield under different conditions was achieved successfully based on the limited information of only a small number of experiments by the uniform design with overlay sampling. Therefore, the present methodology is effective and helpful for the optimization of the biosynthesis processes of PLA.展开更多
In this paper, a fast algorithm to reconstruct the spectrum of non-uniformly sampled signals is proposed. Compared with the original algorithm, the fast algorithm has a higher computational efficiency, especially when...In this paper, a fast algorithm to reconstruct the spectrum of non-uniformly sampled signals is proposed. Compared with the original algorithm, the fast algorithm has a higher computational efficiency, especially when sampling sequence is long. Particularly, a transformation matrix is built, and the reconstructed spectrum is perfectly synthesized from the spectrum of every sampling channel. The fast algorithm has solved efficiency issues of spectrum reconstruction algorithm, and making it possible for the actual application of spectrum reconstruction algorithm in multi-channel Synthetic Aperture Radar (SAR).展开更多
Sampling is a bridge between continuous-time and discrete-time signals,which is import-ant to digital signal processing.The fractional Fourier transform(FrFT)that serves as a generaliz-ation of the FT can characterize...Sampling is a bridge between continuous-time and discrete-time signals,which is import-ant to digital signal processing.The fractional Fourier transform(FrFT)that serves as a generaliz-ation of the FT can characterize signals in multiple fractional Fourier domains,and therefore can provide new perspectives for signal sampling and reconstruction.In this paper,we review recent de-velopments of the sampling theorem associated with the FrFT,including signal reconstruction and fractional spectral analysis of uniform sampling,nonuniform samplings due to various factors,and sub-Nyquist sampling,where bandlimited signals in the fractional Fourier domain are mainly taken into consideration.Moreover,we provide several future research topics of the sampling theorem as-sociated with the FrFT.展开更多
周期性信号采样中,等效采样利用较低采样频率的A/D转换实现高频周期信号的采集,一定程度上弥补欠采样测量精度低的缺陷。为了有效地提高高频测量中阻抗谱测量精度与稳定性,提出一种基于等效采样思想的均匀相位采样的阻抗谱测量方法。利...周期性信号采样中,等效采样利用较低采样频率的A/D转换实现高频周期信号的采集,一定程度上弥补欠采样测量精度低的缺陷。为了有效地提高高频测量中阻抗谱测量精度与稳定性,提出一种基于等效采样思想的均匀相位采样的阻抗谱测量方法。利用单片机共时钟基准的模/数转换器(digital to analog convertor,DAC)与数/模转换器(analog to digital convertor,ADC)模块,在完成激励信号产生、输入输出信号同步采集的基础上,合理设计激励信号频率、采集频率与信号重构方法,实现高频信号单周期内均匀相位分布的等效高频采样,同时为克服常规A/D转换速度条件下难以准确实现高频阻抗谱测量的问题提供了新思路。从误差假设与拟合算法的角度,理论上分析证明了该方法降低误差的原因。并通过两种等效电路模型的阻抗谱测量对比实验,表明该方法在所设计的20~100 kHz高频段上,阻抗测量精度与稳定性得到了显著的提高。展开更多
本文提出了一种基于等角多段探测器的非均匀采样计算机断层成像(Computed Tomography,CT)系统,并针对该系统推导了直接滤波反投影重建算法,分析了算法在处理非均匀采样CT数据时的局限性,特别是算法中权重函数的非光滑性对重建图像的影...本文提出了一种基于等角多段探测器的非均匀采样计算机断层成像(Computed Tomography,CT)系统,并针对该系统推导了直接滤波反投影重建算法,分析了算法在处理非均匀采样CT数据时的局限性,特别是算法中权重函数的非光滑性对重建图像的影响。本文的理论推导和仿真实验结果显示:尽管直接滤波反投影(Filtered Back Projection,FBP)重建算法可能导致环状伪影,但通过适当的系统设计,这些伪影的影响可以被控制在可接受的范围内,并能保持图像的分辨率,使得基于等角多段探测器的非均匀采样CT的FBP算法具有一定的实用价值。本文研究成果为新型CT系统的设计和优化提供了理论依据和实践指导。展开更多
基金National Natural Science Foundation of China(61973037)National 173 Program Project(2019-JCJQ-ZD-324)。
文摘Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.
基金supported by the National Natural Science Foundation of China(Grant Nos.61575205 and 62175022)Sichuan Natural Science Foundation(2022NSFSC0803)Sichuan Science and Technology Program(2021JDRC0035).
文摘The nonuniform distribution of interference spectrum in wavenumber k-space is a key issue to limit the imaging quality of Fourier-domain optical coherence tomography(FD-OCT).At present,the reconstruction quality at different depths among a variety of processing methods in k-space is still uncertain.Using simulated and experimental interference spectra at different depths,the effects of common six processing methods including uniform resampling(linear interpolation(LI),cubic spline interpolation(CSI),time-domain interpolation(TDI),and K-B window convolution)and nonuniform sampling direct-reconstruction(Lomb periodogram(LP)and nonuniform discrete Fourier transform(NDFT))on the reconstruction quality of FD-OCT were quantitatively analyzed and compared in this work.The results obtained by using simulated and experimental data were coincident.From the experimental results,the averaged peak intensity,axial resolution,and signal-to-noise ratio(SNR)of NDFT at depth from 0.5 to 3.0mm were improved by about 1.9 dB,1.4 times,and 11.8 dB,respectively,compared to the averaged indices of all the uniform resampling methods at all depths.Similarly,the improvements of the above three indices of LP were 2.0 dB,1.4 times,and 11.7 dB,respectively.The analysis method and the results obtained in this work are helpful to select an appropriate processing method in k-space,so as to improve the imaging quality of FD-OCT.
基金supported by the National Natural Science Foundation of China(61273070,61203092)the Enterprise-college-institute Cooperative Project of Jiangsu Province(BY2015019-21)+1 种基金111 Project(B12018)the Fun-damental Research Funds for the Central Universities(JUSRP51733B)
文摘For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on system between every consecutive output sampling instants,the actual fault function is transformed to obtain an equivalent fault model by using the integral mean value theorem,then the non-uniform sampling hybrid system is converted to continuous systems with timevarying delay based on the output delay method.Afterwards,an observer-based fault diagnosis filter with virtual fault is designed to estimate the equivalent fault,and the iterative learning regulation algorithm is chosen to update the virtual fault repeatedly to make it approximate the actual equivalent fault after some iterative learning trials,so the algorithm can detect and estimate the system faults adaptively.Simulation results of an electro-mechanical control system model with different types of faults illustrate the feasibility and effectiveness of this algorithm.
基金Supported partially by the National Natural Science Foundation of China(21576240)the Natural Science Foundation of Zhejiang Province(LZ14B060001,LY16B060011)
文摘A Lactobacillus buchneri GBS3 strain isolated from the traditional Chinese pickles was used for the production of 3-phenyllactic acid(PLA), an important compound with antimicrobial activities against a wide species of grampositive and gram-negative bacteria and some fungi. The growth performance of this strain in the de Man, Rogosa and Sharpe(MRS) medium, the production of metabolites of valuable organic acids, and the biosynthesis of PLA using this strain as the whole-cell biocatalyst and phenylpyruvic acid(PPA) as the precursor, were investigated experimentally. The uniform design method with overlay sampling was developed for the optimization of the biotransformation conditions. The results showed that although it produced naturally lactic acid with the maximum concentration of 1.84 g·L^(-1) and PLA with the concentration of 0.015 g·L^(-1) after 66 to 72 h cultivation in MRS broth by fermentation, the present strain displayed an effective utilization ability by transforming PPA to PLA. By the uniform design method with overlay sampling for the design and optimization of transformation conditions, a maximum yield of 10.93 g·L^(-1) PLA with the mole conversion ratio of 83.07% from PPA to PLA was achieved under the optimized condition, i.e., 20 g·L^(-1) glucose, 270 g·L^(-1) cells, 13 g·L^(-1) PPA, pH 8.0 and the reaction time of 15 h, indicating that Lactobacillus buchneri GBS3 was an interesting strain for the biosynthesis of PLA via the microbial transformation. The prediction of PLA yield under different conditions was achieved successfully based on the limited information of only a small number of experiments by the uniform design with overlay sampling. Therefore, the present methodology is effective and helpful for the optimization of the biosynthesis processes of PLA.
文摘In this paper, a fast algorithm to reconstruct the spectrum of non-uniformly sampled signals is proposed. Compared with the original algorithm, the fast algorithm has a higher computational efficiency, especially when sampling sequence is long. Particularly, a transformation matrix is built, and the reconstructed spectrum is perfectly synthesized from the spectrum of every sampling channel. The fast algorithm has solved efficiency issues of spectrum reconstruction algorithm, and making it possible for the actual application of spectrum reconstruction algorithm in multi-channel Synthetic Aperture Radar (SAR).
基金supported in part by the National Natural Foundation of China(NSFC)(Nos.62027801 and U1833203)the Beijing Natural Science Foundation(No.L191004).
文摘Sampling is a bridge between continuous-time and discrete-time signals,which is import-ant to digital signal processing.The fractional Fourier transform(FrFT)that serves as a generaliz-ation of the FT can characterize signals in multiple fractional Fourier domains,and therefore can provide new perspectives for signal sampling and reconstruction.In this paper,we review recent de-velopments of the sampling theorem associated with the FrFT,including signal reconstruction and fractional spectral analysis of uniform sampling,nonuniform samplings due to various factors,and sub-Nyquist sampling,where bandlimited signals in the fractional Fourier domain are mainly taken into consideration.Moreover,we provide several future research topics of the sampling theorem as-sociated with the FrFT.
文摘周期性信号采样中,等效采样利用较低采样频率的A/D转换实现高频周期信号的采集,一定程度上弥补欠采样测量精度低的缺陷。为了有效地提高高频测量中阻抗谱测量精度与稳定性,提出一种基于等效采样思想的均匀相位采样的阻抗谱测量方法。利用单片机共时钟基准的模/数转换器(digital to analog convertor,DAC)与数/模转换器(analog to digital convertor,ADC)模块,在完成激励信号产生、输入输出信号同步采集的基础上,合理设计激励信号频率、采集频率与信号重构方法,实现高频信号单周期内均匀相位分布的等效高频采样,同时为克服常规A/D转换速度条件下难以准确实现高频阻抗谱测量的问题提供了新思路。从误差假设与拟合算法的角度,理论上分析证明了该方法降低误差的原因。并通过两种等效电路模型的阻抗谱测量对比实验,表明该方法在所设计的20~100 kHz高频段上,阻抗测量精度与稳定性得到了显著的提高。
文摘本文提出了一种基于等角多段探测器的非均匀采样计算机断层成像(Computed Tomography,CT)系统,并针对该系统推导了直接滤波反投影重建算法,分析了算法在处理非均匀采样CT数据时的局限性,特别是算法中权重函数的非光滑性对重建图像的影响。本文的理论推导和仿真实验结果显示:尽管直接滤波反投影(Filtered Back Projection,FBP)重建算法可能导致环状伪影,但通过适当的系统设计,这些伪影的影响可以被控制在可接受的范围内,并能保持图像的分辨率,使得基于等角多段探测器的非均匀采样CT的FBP算法具有一定的实用价值。本文研究成果为新型CT系统的设计和优化提供了理论依据和实践指导。