目的为评价CEREC椅旁CAD/CAM系统制作的IPS e.max CAD玻璃陶瓷高嵌体应用于根管治疗后牙缺损病例的临床效果。方法选择42例根管治疗后牙,应用高嵌体的牙体预备方式,采用CEREC椅旁CAD/CAM修复系统和IPS e.max CAD玻璃陶瓷,即刻完成修复...目的为评价CEREC椅旁CAD/CAM系统制作的IPS e.max CAD玻璃陶瓷高嵌体应用于根管治疗后牙缺损病例的临床效果。方法选择42例根管治疗后牙,应用高嵌体的牙体预备方式,采用CEREC椅旁CAD/CAM修复系统和IPS e.max CAD玻璃陶瓷,即刻完成修复体并粘接;修复1年后复查,参照改良修正后的美国公众健康服务标准(US Public Health Service Criteria,USPHS),在修复体边缘染色、边缘继发龋、修复体边缘适合性、修复体崩瓷折裂或脱落、修复体颜色、牙龈健康状况、修复体邻接关系、患者满意度8个方面进行评价。结果修复体边缘染色C级病例1例,成功率97.6%;边缘继发龋C级病例1例,成功率97.6%;修复体邻接关系欠佳C级病例1例,成功率97.6%;在边缘适合性、修复体崩瓷折裂或脱落、修复体颜色、牙龈健康状况、患者满意方面表现优秀,成功率均为100%。结论椅旁CAD/CAM系统制作的IPS e.maxCAD高嵌体修复体在短期内可取得良好的修复效果。展开更多
Non-flow aqueous zinc-bromine batteries without auxiliary components(e.g.,pumps,pipes,storage tanks)and ion-selective membranes represent a cost-effective and promising technology for large-scale energy storage.Unfort...Non-flow aqueous zinc-bromine batteries without auxiliary components(e.g.,pumps,pipes,storage tanks)and ion-selective membranes represent a cost-effective and promising technology for large-scale energy storage.Unfortunately,they generally suffer from serious diffusion and shuttle of polybromide(Br^(-),Br^(3-))due to the weak physical adsorption between soluble polybromide and host carbon materials,which results in low energy efficiency and poor cycling stability.Here,we develop a novel self-capture organic bromine material(1,10-bis[3-(trimethylammonio)propyl]-4,4'-bipyridinium bromine,NVBr4)to successfully realize reversible solid complexation of bromide components for stable non-flow zinc-bromine battery applications.The quaternary ammonium groups(NV^(4+)ions)can effectively capture the soluble polybromide species based on strong chemical interaction and realize reversible solid complexation confined within the porous electrodes,which transforms the conventional“liquid-liquid”conversion of soluble bromide components into“liquid-solid”model and effectively suppresses the shuttle effect.Thereby,the developed non-flow zinc-bromide battery provides an outstanding voltage platform at 1.7 V with a notable specific capacity of 325 mAh g^(-1)NVBr4(1 A g^(-1)),excellent rate capability(200 mAh g^(-1)NVBr4 at 20 A g^(-1)),outstanding energy density of 469.6 Wh kg^(-1)and super-stable cycle life(20,000 cycles with 100%Coulombic efficiency),which outperforms most of reported zinc-halogen batteries.Further mechanism analysis and DFT calculations demonstrate that the chemical interaction of quaternary ammonium groups and bromide species is the main reason for suppressing the shuttle effect.The developed strategy can be extended to other halogen batteries to obtain stable charge storage.展开更多
文摘目的为评价CEREC椅旁CAD/CAM系统制作的IPS e.max CAD玻璃陶瓷高嵌体应用于根管治疗后牙缺损病例的临床效果。方法选择42例根管治疗后牙,应用高嵌体的牙体预备方式,采用CEREC椅旁CAD/CAM修复系统和IPS e.max CAD玻璃陶瓷,即刻完成修复体并粘接;修复1年后复查,参照改良修正后的美国公众健康服务标准(US Public Health Service Criteria,USPHS),在修复体边缘染色、边缘继发龋、修复体边缘适合性、修复体崩瓷折裂或脱落、修复体颜色、牙龈健康状况、修复体邻接关系、患者满意度8个方面进行评价。结果修复体边缘染色C级病例1例,成功率97.6%;边缘继发龋C级病例1例,成功率97.6%;修复体邻接关系欠佳C级病例1例,成功率97.6%;在边缘适合性、修复体崩瓷折裂或脱落、修复体颜色、牙龈健康状况、患者满意方面表现优秀,成功率均为100%。结论椅旁CAD/CAM系统制作的IPS e.maxCAD高嵌体修复体在短期内可取得良好的修复效果。
文摘将α-Fe_(2)O_(3)@C与钛粉和铝粉一同进行高温煅烧,制备了Fe O@C/MAX(FCM)复合材料。通过XRD、SEM、TEM表征了FCM复合材料在不同Ti/C与Al/C物质的量比下的结构、组成及形貌变化,采用电化学动力学分析方法定量计算了FCM复合材料的赝电容占比,推测可能的电荷储存机理。结果表明,随着Ti/C与Al/C物质的量比的增大,FCM复合材料中MAX相(Ti_(2)Al C和Ti_(3)Al C_(2))的含量随之变化,而α-Fe_(2)O_(3)转变为不稳定的Fe O。当n(Ti)∶n(Al)∶n(C)=3∶1∶2时,制得的FCM-312样品在1 m V/s扫描速率下的比电容最大,为125.09 F/g,约为α-Fe_(2)O_(3)@C的4.76倍。FCM复合材料中部分MAX相在电化学过程中发生氧化还原反应,为离子间电子快速输运提供了条件,增加了FCM复合材料的赝电容占比。其中,FCM-312样品在10 m V/s扫描速率下的赝电容占比为22.12%。
基金the Guangdong Basic and Applied Basic Research Foundation(grant number:2019A1515011819,2021B1515120004)National Natural Science Foundation of China(22005207)Open Research Fund of Songshan Lake Materials Laboratory(2021SLABFN04).
文摘Non-flow aqueous zinc-bromine batteries without auxiliary components(e.g.,pumps,pipes,storage tanks)and ion-selective membranes represent a cost-effective and promising technology for large-scale energy storage.Unfortunately,they generally suffer from serious diffusion and shuttle of polybromide(Br^(-),Br^(3-))due to the weak physical adsorption between soluble polybromide and host carbon materials,which results in low energy efficiency and poor cycling stability.Here,we develop a novel self-capture organic bromine material(1,10-bis[3-(trimethylammonio)propyl]-4,4'-bipyridinium bromine,NVBr4)to successfully realize reversible solid complexation of bromide components for stable non-flow zinc-bromine battery applications.The quaternary ammonium groups(NV^(4+)ions)can effectively capture the soluble polybromide species based on strong chemical interaction and realize reversible solid complexation confined within the porous electrodes,which transforms the conventional“liquid-liquid”conversion of soluble bromide components into“liquid-solid”model and effectively suppresses the shuttle effect.Thereby,the developed non-flow zinc-bromide battery provides an outstanding voltage platform at 1.7 V with a notable specific capacity of 325 mAh g^(-1)NVBr4(1 A g^(-1)),excellent rate capability(200 mAh g^(-1)NVBr4 at 20 A g^(-1)),outstanding energy density of 469.6 Wh kg^(-1)and super-stable cycle life(20,000 cycles with 100%Coulombic efficiency),which outperforms most of reported zinc-halogen batteries.Further mechanism analysis and DFT calculations demonstrate that the chemical interaction of quaternary ammonium groups and bromide species is the main reason for suppressing the shuttle effect.The developed strategy can be extended to other halogen batteries to obtain stable charge storage.