Based on the assumption of the plain-strain problem, various optimization or random search methods have been developed for locating the critical slip surfaces in slope-stability analysis, but none of such methods is a...Based on the assumption of the plain-strain problem, various optimization or random search methods have been developed for locating the critical slip surfaces in slope-stability analysis, but none of such methods is applicable to the 3D case. In this paper, a simple Monte Carlo random simulation method is proposed to identify the 3D critical slip surface. Assuming the initial slip to be the lower part of a slip ellipsoid, the 3D critical slip surface is located by means of a minimized 3D safety factor. A column-based 3D slope stability analysis model is used to calculate this factor. In this study, some practical cases of known minimum safety factors and critical slip surfaces in 2D analysis are extended to 3D slope problems to locate the critical slip surfaces. Compared with the 2D result, the resulting 3D critical slip surface has no apparent difference in terms of only cross section, but the associated 3D safety factor is definitely higher.展开更多
The critical slip surface of a fractured rock slope tends to extend along the fractures.Thus,fracture orientation plays a critical role in determining the critical slip surface.Based on fracture orientation data,this ...The critical slip surface of a fractured rock slope tends to extend along the fractures.Thus,fracture orientation plays a critical role in determining the critical slip surface.Based on fracture orientation data,this paper examines the critical slip surfaces of fractured rock slopes.Given that the surface of a fractured rock slope extends along the fracture surfaces,or the wedges,with each composed of two arbitrary fractures,the critical slip surface is determined via stochastic dynamics.In addition,a fracture frequency method is proposed as a means of analyzing the critical slip surface.According to this method,the critical slip surface slips in whichever direction has the lowest fracture frequency.Based on the stochastic dynamics method and the fracture frequency method,the critical slip surface of the slope is finally determined,that is,the critical slip surface takes the form of a plane passing the slope toe with a dip of 120° and a dip angle of 45°.展开更多
文摘Based on the assumption of the plain-strain problem, various optimization or random search methods have been developed for locating the critical slip surfaces in slope-stability analysis, but none of such methods is applicable to the 3D case. In this paper, a simple Monte Carlo random simulation method is proposed to identify the 3D critical slip surface. Assuming the initial slip to be the lower part of a slip ellipsoid, the 3D critical slip surface is located by means of a minimized 3D safety factor. A column-based 3D slope stability analysis model is used to calculate this factor. In this study, some practical cases of known minimum safety factors and critical slip surfaces in 2D analysis are extended to 3D slope problems to locate the critical slip surfaces. Compared with the 2D result, the resulting 3D critical slip surface has no apparent difference in terms of only cross section, but the associated 3D safety factor is definitely higher.
基金supported by the National Natural Science Foundation of China(Grant Nos.40872170,40902077,41072196)Doctoral Program Foundation of Higher Education of China(Grant No.20090061110054)+2 种基金Jilin University's 985 Project(Grant No.450070021107)Graduate Innovation Fund of Jilin University(Grant No.20121073)Basic Research of Jilin University(Grant No.421032184424)
文摘The critical slip surface of a fractured rock slope tends to extend along the fractures.Thus,fracture orientation plays a critical role in determining the critical slip surface.Based on fracture orientation data,this paper examines the critical slip surfaces of fractured rock slopes.Given that the surface of a fractured rock slope extends along the fracture surfaces,or the wedges,with each composed of two arbitrary fractures,the critical slip surface is determined via stochastic dynamics.In addition,a fracture frequency method is proposed as a means of analyzing the critical slip surface.According to this method,the critical slip surface slips in whichever direction has the lowest fracture frequency.Based on the stochastic dynamics method and the fracture frequency method,the critical slip surface of the slope is finally determined,that is,the critical slip surface takes the form of a plane passing the slope toe with a dip of 120° and a dip angle of 45°.