期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
ON BIHARI S INEQUALITY
1
作者 李炜 《城市学刊》 1987年第6期18-20,共3页
本文给出了Bihari不等式成在高维空间的一种推广形式。即证明了定理:设Ω_r表R^n中的球;S^2=sum from i=1 to n (S_i^2≤r^2),Q为R^n中有界可测集,u(s,x),f(s,x)为Ω_R×Q(R>r)下的非责有界连续函数,c≥0为常数,若 u(t,y≤c+∫f(... 本文给出了Bihari不等式成在高维空间的一种推广形式。即证明了定理:设Ω_r表R^n中的球;S^2=sum from i=1 to n (S_i^2≤r^2),Q为R^n中有界可测集,u(s,x),f(s,x)为Ω_R×Q(R>r)下的非责有界连续函数,c≥0为常数,若 u(t,y≤c+∫f(s,x)φ[u(s,x)dxds] (1)对(t,y)∈Ω_r×Q(r<R)成立,其中φ(u)当0<u<ü(ü≤∞)为正的连续非减函数,又设ψ(u)=integral from n=0 to u du_1/(φu_1)(c<u<ü)这时如果 ∫Ω_r×Q~[f(s,x)dxds]<ψ(ü-0) (2)则有 supu(t,y)≤ψ^(-1)[f(s,x)dxds] (t,y)∈Ω_r×Q 展开更多
关键词 定理 ON bihari s inequality
下载PDF
REGULARITY PROPERTY OF SOLUTION TO TWO-PARAMETER STOCHASTIC VOLTERRA EQUATION WITH NON-LIPSCHITZ COEFFICIENTS
2
作者 姜国 王湘君 《Acta Mathematica Scientia》 SCIE CSCD 2013年第3期872-882,共11页
This article proves the existence and uniqueness of solution to two-parameter stochastic Volterra equation with non-Lipschitz coefficients and driven by Brownian sheet, where the main tool is Bihari's inequality in t... This article proves the existence and uniqueness of solution to two-parameter stochastic Volterra equation with non-Lipschitz coefficients and driven by Brownian sheet, where the main tool is Bihari's inequality in the plane. Moreover, we also discuss the time regularity property of the solution by Kolmogorov's continuity criterion. 展开更多
关键词 stochastic Volterra equation Brownian sheet bihari's inequality non-lipschitz Picard's approximation
下载PDF
Nonlinear Discrete Inequalities of Bihari-type and Applications
3
作者 Yu WU 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2013年第3期603-614,共12页
Discrete Bihari-type inequalities with n nonlinear terms are discussed, which generalize some known results and may be used in the analysis of certain problems in the theory of difference equations. Examples to illust... Discrete Bihari-type inequalities with n nonlinear terms are discussed, which generalize some known results and may be used in the analysis of certain problems in the theory of difference equations. Examples to illustrate the boundedness of solutions of a difference equation are also given. 展开更多
关键词 discrete inequality biharis type NONLINEAR MONOTONICITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部