期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
基于Non-Local means滤波的雾天降质图像恢复算法 被引量:2
1
作者 胡正平 荀娜娜 《四川兵工学报》 CAS 2010年第11期116-120,共5页
针对目前去雾算法易导致边缘晕环效应、边缘轮廓及景物特征比较模糊问题,提出了一种景深等先验信息未知条件下基于Non-Local means滤波的雾天降质图像恢复算法。首先,根据大气散射模型将经典的场景深度估计转化为大气面纱以及天空亮度估... 针对目前去雾算法易导致边缘晕环效应、边缘轮廓及景物特征比较模糊问题,提出了一种景深等先验信息未知条件下基于Non-Local means滤波的雾天降质图像恢复算法。首先,根据大气散射模型将经典的场景深度估计转化为大气面纱以及天空亮度估计,避免难求的场景深度图;然后,对雾天降质图像进行雾气平均化预处理,经过预处理图像平均亮度变小;其次,依据大气面纱的边缘跟雾天图像的低频具有大的相似性,采用Non-Localmeans滤波算法估计大气面纱模型;最后,为了使恢复图像的亮度跟色度都更加接近晴天图像,进行防止对比度放大的平滑与色度调整处理。通过与已有实验结果对比表明,提出的算法可以获得更精确的大气面纱,恢复图像不但边缘轮廓及景物特征都比较清楚,而且可有效抑制边缘晕环效应。 展开更多
关键词 大气散射模型 non-local means 大气面纱 去雾程度 图像恢复
下载PDF
基于NL-Means的均值平移图像分割算法 被引量:2
2
作者 曾孝平 付勇 刘国金 《微计算机信息》 2009年第3期284-285,308,共3页
针对均值平移图象分割算法中,在密度中心点选择时的不足,本文采用一种新的寻找密度中心点的方法,同时,为了克服传统基于特征空间分析的图像分割方法对像素点空间关系考虑不够充分的缺陷,通过Non-local means算法,在距离公式中引入特征... 针对均值平移图象分割算法中,在密度中心点选择时的不足,本文采用一种新的寻找密度中心点的方法,同时,为了克服传统基于特征空间分析的图像分割方法对像素点空间关系考虑不够充分的缺陷,通过Non-local means算法,在距离公式中引入特征权参数,从而优化聚类效果。对图象分割结果分析表明了这种方法的有效性。 展开更多
关键词 特征空间分析 均值平移 non-local means算法
下载PDF
Fast Non-Local Means Algorithm Based on Krawtchouk Moments 被引量:2
3
作者 吴一全 戴一冕 +1 位作者 殷骏 吴健生 《Transactions of Tianjin University》 EI CAS 2015年第2期104-112,共9页
Non-local means(NLM)method is a state-of-the-art denoising algorithm, which replaces each pixel with a weighted average of all the pixels in the image. However, the huge computational complexity makes it impractical f... Non-local means(NLM)method is a state-of-the-art denoising algorithm, which replaces each pixel with a weighted average of all the pixels in the image. However, the huge computational complexity makes it impractical for real applications. Thus, a fast non-local means algorithm based on Krawtchouk moments is proposed to improve the denoising performance and reduce the computing time. Krawtchouk moments of each image patch are calculated and used in the subsequent similarity measure in order to perform a weighted averaging. Instead of computing the Euclidean distance of two image patches, the similarity measure is obtained by low-order Krawtchouk moments, which can reduce a lot of computational complexity. Since Krawtchouk moments can extract local features and have a good antinoise ability, they can classify the useful information out of noise and provide an accurate similarity measure. Detailed experiments demonstrate that the proposed method outperforms the original NLM method and other moment-based methods according to a comprehensive consideration on subjective visual quality, method noise, peak signal to noise ratio(PSNR), structural similarity(SSIM) index and computing time. Most importantly, the proposed method is around 35 times faster than the original NLM method. 展开更多
关键词 IMAGE processing IMAGE DENOISING non-local means Krawtchouk MOMENTS SIMILARITY MEASURE
下载PDF
Improved Non-Local Means Algorithm for Image Denoising 被引量:4
4
作者 Lingli Huang 《Journal of Computer and Communications》 2015年第4期23-29,共7页
Image denoising technology is one of the forelands in the field of computer graphic and computer vision. Non-local means method is one of the great performing methods which arouse tremendous research. In this paper, a... Image denoising technology is one of the forelands in the field of computer graphic and computer vision. Non-local means method is one of the great performing methods which arouse tremendous research. In this paper, an improved weighted non-local means algorithm for image denoising is proposed. The non-local means denoising method replaces each pixel by the weighted average of pixels with the surrounding neighborhoods. The proposed method evaluates on testing images with various levels noise. Experimental results show that the algorithm improves the denoising performance. 展开更多
关键词 IMAGE DENOISING non-local means GAUSSIAN Noise
下载PDF
Local edge direction based non-local means for image denoising 被引量:2
5
作者 JIA Li-na JIAO Feng-yuan +1 位作者 LIU Rui-qiang GUI Zhi-guo 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2019年第3期236-240,共5页
Classic non-local means (CNLM) algorithm uses the inherent self-similarity in images for noise removal. The denoised pixel value is estimated through the weighted average of all the pixels in its non-local neighborhoo... Classic non-local means (CNLM) algorithm uses the inherent self-similarity in images for noise removal. The denoised pixel value is estimated through the weighted average of all the pixels in its non-local neighborhood. In the CNLM algorithm, the differences between the pixel value and the distance of the pixel to the center are both taken into consideration to calculate the weighting coefficients. However, the Gaussian kernel cannot reflect the information of edge and structure due to its isotropy, and it has poor performance in flat regions. In this paper, an improved non-local means algorithm based on local edge direction is presented for image denoising. In edge and structure regions, the steering kernel regression (SKR) coefficients are used to calculate the weights, and in flat regions the average kernel is used. Experiments show that the proposed algorithm can effectively protect edge and structure while removing noises better when compared with the CNLM algorithm. 展开更多
关键词 image denoising neighborhood filter non-local means (NLM) steering kernel regression (SKR)
下载PDF
Two Modifications of Weight Calculation of the Non-Local Means Denoising Method
6
作者 Musab Elkheir Salih Xuming Zhang Mingyue Ding 《Engineering(科研)》 2013年第10期522-526,共5页
The non-local means (NLM) denoising method replaces each pixel by the weighted average of pixels with the sur-rounding neighborhoods. In this paper we employ a cosine weighting function instead of the original exponen... The non-local means (NLM) denoising method replaces each pixel by the weighted average of pixels with the sur-rounding neighborhoods. In this paper we employ a cosine weighting function instead of the original exponential func-tion to improve the efficiency of the NLM denoising method. The cosine function outperforms in the high level noise more than low level noise. To increase the performance more in the low level noise we calculate the neighborhood si-milarity weights in a lower-dimensional subspace using singular value decomposition (SVD). Experimental compari-sons between the proposed modifications against the original NLM algorithm demonstrate its superior denoising per-formance in terms of peak signal to noise ratio (PSNR) and histogram, using various test images corrupted by additive white Gaussian noise (AWGN). 展开更多
关键词 non-local means SINGULAR VALUE DECOMPOSITION WEIGHT Calculation
下载PDF
Validity of non-local mean filter and novel denoising method 被引量:1
7
作者 Xiangyuan LIU Zhongke WU Xingce WANG 《Virtual Reality & Intelligent Hardware》 EI 2023年第4期338-350,共13页
Background Image denoising is an important topic in the digital image processing field.This study theoretically investigates the validity of the classical nonlocal mean filter(NLM)for removing Gaussian noise from a no... Background Image denoising is an important topic in the digital image processing field.This study theoretically investigates the validity of the classical nonlocal mean filter(NLM)for removing Gaussian noise from a novel statistical perspective.Method By considering the restored image as an estimator of the clear image from a statistical perspective,we gradually analyze the unbiasedness and effectiveness of the restored value obtained by the NLM filter.Subsequently,we propose an improved NLM algorithm called the clustering-based NLM filter that is derived from the conditions obtained through the theoretical analysis.The proposed filter attempts to restore an ideal value using the approximately constant intensities obtained by the image clustering process.In this study,we adopt a mixed probability model on a prefiltered image to generate an estimator of the ideal clustered components.Result The experiment yields improved peak signal-to-noise ratio values and visual results upon the removal of Gaussian noise.Conclusion However,the considerable practical performance of our filter demonstrates that our method is theoretically acceptable as it can effectively estimate ideal images. 展开更多
关键词 Gaussian noise non-local means filter UNBIASEDNESS EFFECTIVENESS
下载PDF
Non-Local DWI Image Super-Resolution with Joint Information Based on GPU Implementation
8
作者 Yanfen Guo Zhe Cui +2 位作者 Zhipeng Yang Xi Wu Shaahin Madani 《Computers, Materials & Continua》 SCIE EI 2019年第9期1205-1215,共11页
Since the spatial resolution of diffusion weighted magnetic resonance imaging(DWI)is subject to scanning time and other constraints,its spatial resolution is relatively limited.In view of this,a new non-local DWI imag... Since the spatial resolution of diffusion weighted magnetic resonance imaging(DWI)is subject to scanning time and other constraints,its spatial resolution is relatively limited.In view of this,a new non-local DWI image super-resolution with joint information method was proposed to improve the spatial resolution.Based on the non-local strategy,we use the joint information of adjacent scan directions to implement a new weighting scheme.The quantitative and qualitative comparison of the datasets of synthesized DWI and real DWI show that this method can significantly improve the resolution of DWI.However,the algorithm ran slowly because of the joint information.In order to apply the algorithm to the actual scene,we compare the proposed algorithm on CPU and GPU respectively.It is found that the processing time on GPU is much less than on CPU,and that the highest speedup ratio to the traditional algorithm is more than 26 times.It raises the possibility of applying reconstruction algorithms in actual workplaces. 展开更多
关键词 SUPER-RESOLUTION non-local means parallel computing GPU
下载PDF
Automatic segmentation of brain tissue based on improvedfuzzy c means clustering algorithm
9
作者 Zhuang Miao Xiaomei Lin Chengcheng Liu 《Journal of Biomedical Science and Engineering》 2011年第2期100-104,共5页
In medical images, exist often a lot of noise, the noise will seriously affect the accuracy of the segmentation results. The traditional standard fuzzy c-means(FCM) algorithm in image segmentation do not taken into ac... In medical images, exist often a lot of noise, the noise will seriously affect the accuracy of the segmentation results. The traditional standard fuzzy c-means(FCM) algorithm in image segmentation do not taken into account the relationship the adjacent pixels, which leads to the standard fuzzy c-means(FCM) algorithm is very sensitive to noise in the image. Proposed improvedfuzzy c-means(FCM) algorithm, taking both the local and non-local information into the standard fuzzy c-means(FCM) clustering algorithm. The ex-periment results can show that the improved algorithm can achieve better effect than other methods of brain tissue segmentation. 展开更多
关键词 LOCAL Information non-local mean BRAIN TISSUE SEGMENTATION
下载PDF
A Robust and Fast Non-Local Means Algorithm for Image Denoising 被引量:30
10
作者 刘艳丽 王进 +2 位作者 陈曦 郭延文 彭群生 《Journal of Computer Science & Technology》 SCIE EI CSCD 2008年第2期270-279,共10页
In the paper, we propose a robust and fast image denoising method. The approach integrates both Non- Local means algorithm and Laplacian Pyramid. Given an image to be denoised, we first decompose it into Laplacian pyr... In the paper, we propose a robust and fast image denoising method. The approach integrates both Non- Local means algorithm and Laplacian Pyramid. Given an image to be denoised, we first decompose it into Laplacian pyramid. Exploiting the redundancy property of Laplacian pyramid, we then perform non-local means on every level image of Laplacian pyramid. Essentially, we use the similarity of image features in Laplacian pyramid to act as weight to denoise image. Since the features extracted in Laplacian pyramid are localized in spatial position and scale, they are much more able to describe image, and computing the similarity between them is more reasonable and more robust. Also, based on the efficient Summed Square Image (SSI) scheme and Fast Fourier Transform (FFT), we present an accelerating algorithm to break the bottleneck of non-local means algorithm - similarity computation of compare windows. After speedup, our algorithm is fifty times faster than original non-local means algorithm. Experiments demonstrated the effectiveness of our algorithm. 展开更多
关键词 image denoising non-local means Laplacian pyramid summed square image FFT
原文传递
The Algorithms about Fast Non-local Means Based Image Denoising 被引量:5
11
作者 Li-li XING Qian-shun CHANG Tian-tian QIAO 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2012年第2期247-254,共8页
Image denoising is still a challenge of image processing. Buades et al. proposed a nonlocal means (NL-means) approach. This method had a remarkable denoising results at high expense of computational cost. In this pa... Image denoising is still a challenge of image processing. Buades et al. proposed a nonlocal means (NL-means) approach. This method had a remarkable denoising results at high expense of computational cost. In this paper, We compared several fast non-local means methods, and proposed a new fast algorithm. Numerical experiments showed that our algorithm considerably reduced the computational cost, and obtained visually pleasant images. 展开更多
关键词 ALGORITHM image denoising non-local means weight function
原文传递
A Two-Step Regularization Framework for Non-Local Means 被引量:1
12
作者 孙忠贵 陈松灿 乔立山 《Journal of Computer Science & Technology》 SCIE EI CSCD 2014年第6期1026-1037,共12页
As an effective patch-based denoising method, non-local means (NLM) method achieves favorable denoising performance over its local counterparts and has drawn wide attention in image processing community. The in, ple... As an effective patch-based denoising method, non-local means (NLM) method achieves favorable denoising performance over its local counterparts and has drawn wide attention in image processing community. The in, plementation of NLM can formally be decomposed into two sequential steps, i.e., computing the weights and using the weights to compute the weighted means. In the first step, the weights can be obtained by solving a regularized optimization. And in the second step, the means can be obtained by solving a weighted least squares problem. Motivated by such observations, we establish a two-step regularization framework for NLM in this paper. Meanwhile, using the fl-amework, we reinterpret several non-local filters in the unified view. Further, taking the framework as a design platform, we develop a novel non-local median filter for removing salt-pepper noise with encouraging experimental results. 展开更多
关键词 non-local means non-local median FRAMEWORK image denoising REGULARIZATION
原文传递
A powerful denoising method based on non-local means filter for cryo-electron microscopic images
13
作者 Dai-Yu Wei, Chang-Cheng Yin Department of Biophysics, Health Science Center, Peking University,38 Xueyuan Road, Beijing,100191 《生物物理学报》 CAS CSCD 北大核心 2009年第S1期508-508,共1页
Cryo-electron microscopic images of biological molecules usually have high noise and low contrast. It is essential to suppress noise and enhance contrast in order to recognize
关键词 cryo-electron MICROSCOPY noise reduction image processing non-local means FILTER
原文传递
一种新的ASL图像去噪方法研究
14
作者 刘灿 高燕华 +2 位作者 喻罡 徐效文 张明 《计算机工程与应用》 CSCD 2014年第1期159-162,共4页
动脉自旋标记(ASL)MR图像信噪比低,需要重复采集多次以获得高质量的血流(CBF)图。临床中通常使用3D高斯滤波降低噪声但效果不佳。鉴于此,提出了新的基于非局域均值滤波(NLM)的ASL图像去噪方法,利用图像内部块相似度加权,降低噪声并提高... 动脉自旋标记(ASL)MR图像信噪比低,需要重复采集多次以获得高质量的血流(CBF)图。临床中通常使用3D高斯滤波降低噪声但效果不佳。鉴于此,提出了新的基于非局域均值滤波(NLM)的ASL图像去噪方法,利用图像内部块相似度加权,降低噪声并提高血流图的计算精度。实验证明:与高斯滤波的结果比较,采用新方法得到的血流图和真实结果更接近,实现了在较少采集次数的情况下,得到精确的血流图像的目标。 展开更多
关键词 非局部均值方法(NLM) 高斯滤波 动脉自旋标记(ASL) 图像去噪 non-local means(NLM) ARTERIAL Spin Labeling(ASL)
下载PDF
A Zernike-moment-based non-local denoising filter for cryo-EM images 被引量:5
15
作者 WANG Jia YIN ChangCheng 《Science China(Life Sciences)》 SCIE CAS 2013年第4期384-390,共7页
Cryo-electron microscopy (cryo-EM) plays an important role in determining the structure of proteins, viruses, and even the whole cell. It can capture dynamic structural changes of large protein complexes, which other ... Cryo-electron microscopy (cryo-EM) plays an important role in determining the structure of proteins, viruses, and even the whole cell. It can capture dynamic structural changes of large protein complexes, which other methods such as X-ray crystallography and nuclear magnetic resonance analysis find difficult. The signal-to-noise ratio of cryo-EM images is low and the contrast is very weak, and therefore, the images are very noisy and require filtering. In this paper, a filtering method based on non-local means and Zernike moments is proposed. The method takes into account the rotational symmetry of some biological molecules to enhance the signal-to-noise ratio of cryo-EM images. The method may be useful in cryo-EM image processing such as the automatic selection of particles, orientation determination, and the building of initial models. 展开更多
关键词 cryo-electron microscopy non-local means Zernike moments rotational symmetry
原文传递
背景提取与前景滤波相结合的时空联合视频降噪 被引量:1
16
作者 周占民 《电子测量技术》 2015年第6期68-72,共5页
针对视频图像的高斯型随机噪声,提出一种背景提取与前景滤波相结合的时空联合视频降噪算法。结合图像膨胀处理和背景差分法将视频图像分为背景和前景部分,前景部分和背景部分分别采用基于Non-local means filter的时空联合视频降噪算法... 针对视频图像的高斯型随机噪声,提出一种背景提取与前景滤波相结合的时空联合视频降噪算法。结合图像膨胀处理和背景差分法将视频图像分为背景和前景部分,前景部分和背景部分分别采用基于Non-local means filter的时空联合视频降噪算法和时域平均算法进行降噪处理,并将处理之后的前景和背景相加,得到最终的视频图像序列。最后,给出了Non-local means filter方法和本文降噪方法降噪效果的对比试验。实验结果表明,Non-local means filter和本文降噪方法降噪后2个测试序列的PSNR分别为33.0043、29.0365和35.8340、31.5261。这说明对于背景固定的监控类视频,该算法在降低算法复杂度、提高实时性的基础上,有效的处理和保留了视频图像的低频信息和高频细节。 展开更多
关键词 视频降噪 背景差分 non-local means 时空联合
下载PDF
Implicit Continuous User Authentication for Mobile Devices based on Deep Reinforcement Learning 被引量:1
17
作者 Christy James Jose M.S.Rajasree 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1357-1372,共16页
The predominant method for smart phone accessing is confined to methods directing the authentication by means of Point-of-Entry that heavily depend on physiological biometrics like,fingerprint or face.Implicit continuou... The predominant method for smart phone accessing is confined to methods directing the authentication by means of Point-of-Entry that heavily depend on physiological biometrics like,fingerprint or face.Implicit continuous authentication initiating to be loftier to conventional authentication mechanisms by continuously confirming users’identities on continuing basis and mark the instant at which an illegitimate hacker grasps dominance of the session.However,divergent issues remain unaddressed.This research aims to investigate the power of Deep Reinforcement Learning technique to implicit continuous authentication for mobile devices using a method called,Gaussian Weighted Cauchy Kriging-based Continuous Czekanowski’s(GWCK-CC).First,a Gaussian Weighted Non-local Mean Filter Preprocessing model is applied for reducing the noise pre-sent in the raw input face images.Cauchy Kriging Regression function is employed to reduce the dimensionality.Finally,Continuous Czekanowski’s Clas-sification is utilized for proficient classification between the genuine user and attacker.By this way,the proposed GWCK-CC method achieves accurate authen-tication with minimum error rate and time.Experimental assessment of the pro-posed GWCK-CC method and existing methods are carried out with different factors by using UMDAA-02 Face Dataset.The results confirm that the proposed GWCK-CC method enhances authentication accuracy,by 9%,reduces the authen-tication time,and error rate by 44%,and 43%as compared to the existing methods. 展开更多
关键词 Deep reinforcement learning gaussian weighted non-local meanfilter cauchy kriging regression continuous czekanowski’s implicit continuous authentication mobile devices
下载PDF
Brief review of image denoising techniques 被引量:10
18
作者 Linwei Fan Fan Zhang +1 位作者 Hui Fan Caiming Zhang 《Visual Computing for Industry,Biomedicine,and Art》 2019年第1期55-66,共12页
With the explosion in the number of digital images taken every day,the demand for more accurate and visually pleasing images is increasing.However,the images captured by modern cameras are inevitably degraded by noise... With the explosion in the number of digital images taken every day,the demand for more accurate and visually pleasing images is increasing.However,the images captured by modern cameras are inevitably degraded by noise,which leads to deteriorated visual image quality.Therefore,work is required to reduce noise without losing image features(edges,corners,and other sharp structures).So far,researchers have already proposed various methods for decreasing noise.Each method has its own advantages and disadvantages.In this paper,we summarize some important research in the field of image denoising.First,we give the formulation of the image denoising problem,and then we present several image denoising techniques.In addition,we discuss the characteristics of these techniques.Finally,we provide several promising directions for future research. 展开更多
关键词 Image denoising non-local means Sparse representation Low-rank Convolutional neural network
下载PDF
Super-Resolution Based on Curvelet Transform and Sparse Representation
19
作者 Israa Ismail Mohamed Meselhy Eltoukhy Ghada Eltaweel 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期167-181,共15页
Super-resolution techniques are used to reconstruct an image with a high resolution from one or more low-resolution image(s).In this paper,we proposed a single image super-resolution algorithm.It uses the nonlocal mea... Super-resolution techniques are used to reconstruct an image with a high resolution from one or more low-resolution image(s).In this paper,we proposed a single image super-resolution algorithm.It uses the nonlocal mean filter as a prior step to produce a denoised image.The proposed algorithm is based on curvelet transform.It converts the denoised image into low and high frequencies(sub-bands).Then we applied a multi-dimensional interpolation called Lancozos interpolation over both sub-bands.In parallel,we applied sparse representation with over complete dictionary for the denoised image.The proposed algorithm then combines the dictionary learning in the sparse representation and the interpolated sub-bands using inverse curvelet transform to have an image with a higher resolution.The experimental results of the proposed super-resolution algorithm show superior performance and obviously better-recovering images with enhanced edges.The comparison study shows that the proposed super-resolution algorithm outperforms the state-of-the-art.The mean absolute error is 0.021±0.008 and the structural similarity index measure is 0.89±0.08. 展开更多
关键词 SUPER-RESOLUTION Curvelet transform non-local means filter lancozos interpolation sparse representation
下载PDF
Image Restoration Using Hybrid Features Improvement on Morphological Component Analysis
20
作者 Der-Chang Tseng Ru-Yin Wei +1 位作者 Ching-Ta Lu Ling-Ling Wang 《Journal of Electronic Science and Technology》 CAS CSCD 2019年第4期371-381,共11页
Images are generally corrupted by impulse noise during acquisition and transmission.Noise deteriorates the quality of images.To remove corruption noise,we propose a hybrid approach to restoring a random noisecorrupted... Images are generally corrupted by impulse noise during acquisition and transmission.Noise deteriorates the quality of images.To remove corruption noise,we propose a hybrid approach to restoring a random noisecorrupted image,including a block matching 3D(BM3D)method,an adaptive non-local mean(ANLM)scheme,and the K-singular value decomposition(K-SVD)algorithm.In the proposed method,we employ the morphological component analysis(MCA)to decompose an image into the texture,structure,and edge parts.Then,the BM3D method,ANLM scheme,and K-SVD algorithm are utilized to eliminate noise in the texture,structure,and edge parts of the image,respectively.Experimental results show that the proposed approach can effectively remove interference random noise in different parts;meanwhile,the deteriorated image is able to be reconstructed well. 展开更多
关键词 Adaptive non-local mean(ANLM) block matching 3D(BM3D) image restoration morphological component analysis(MCA) singular value decomposition(SVD).
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部