期刊文献+
共找到100篇文章
< 1 2 5 >
每页显示 20 50 100
基于Non-Local means滤波的雾天降质图像恢复算法 被引量:2
1
作者 胡正平 荀娜娜 《四川兵工学报》 CAS 2010年第11期116-120,共5页
针对目前去雾算法易导致边缘晕环效应、边缘轮廓及景物特征比较模糊问题,提出了一种景深等先验信息未知条件下基于Non-Local means滤波的雾天降质图像恢复算法。首先,根据大气散射模型将经典的场景深度估计转化为大气面纱以及天空亮度估... 针对目前去雾算法易导致边缘晕环效应、边缘轮廓及景物特征比较模糊问题,提出了一种景深等先验信息未知条件下基于Non-Local means滤波的雾天降质图像恢复算法。首先,根据大气散射模型将经典的场景深度估计转化为大气面纱以及天空亮度估计,避免难求的场景深度图;然后,对雾天降质图像进行雾气平均化预处理,经过预处理图像平均亮度变小;其次,依据大气面纱的边缘跟雾天图像的低频具有大的相似性,采用Non-Localmeans滤波算法估计大气面纱模型;最后,为了使恢复图像的亮度跟色度都更加接近晴天图像,进行防止对比度放大的平滑与色度调整处理。通过与已有实验结果对比表明,提出的算法可以获得更精确的大气面纱,恢复图像不但边缘轮廓及景物特征都比较清楚,而且可有效抑制边缘晕环效应。 展开更多
关键词 大气散射模型 non-local means 大气面纱 去雾程度 图像恢复
下载PDF
Validity of non-local mean filter and novel denoising method
2
作者 Xiangyuan LIU Zhongke WU Xingce WANG 《Virtual Reality & Intelligent Hardware》 EI 2023年第4期338-350,共13页
Background Image denoising is an important topic in the digital image processing field.This study theoretically investigates the validity of the classical nonlocal mean filter(NLM)for removing Gaussian noise from a no... Background Image denoising is an important topic in the digital image processing field.This study theoretically investigates the validity of the classical nonlocal mean filter(NLM)for removing Gaussian noise from a novel statistical perspective.Method By considering the restored image as an estimator of the clear image from a statistical perspective,we gradually analyze the unbiasedness and effectiveness of the restored value obtained by the NLM filter.Subsequently,we propose an improved NLM algorithm called the clustering-based NLM filter that is derived from the conditions obtained through the theoretical analysis.The proposed filter attempts to restore an ideal value using the approximately constant intensities obtained by the image clustering process.In this study,we adopt a mixed probability model on a prefiltered image to generate an estimator of the ideal clustered components.Result The experiment yields improved peak signal-to-noise ratio values and visual results upon the removal of Gaussian noise.Conclusion However,the considerable practical performance of our filter demonstrates that our method is theoretically acceptable as it can effectively estimate ideal images. 展开更多
关键词 Gaussian noise non-local means filter UNBIASEDNESS EFFECTIVENESS
下载PDF
Local edge direction based non-local means for image denoising 被引量:2
3
作者 JIA Li-na JIAO Feng-yuan +1 位作者 LIU Rui-qiang GUI Zhi-guo 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2019年第3期236-240,共5页
Classic non-local means (CNLM) algorithm uses the inherent self-similarity in images for noise removal. The denoised pixel value is estimated through the weighted average of all the pixels in its non-local neighborhoo... Classic non-local means (CNLM) algorithm uses the inherent self-similarity in images for noise removal. The denoised pixel value is estimated through the weighted average of all the pixels in its non-local neighborhood. In the CNLM algorithm, the differences between the pixel value and the distance of the pixel to the center are both taken into consideration to calculate the weighting coefficients. However, the Gaussian kernel cannot reflect the information of edge and structure due to its isotropy, and it has poor performance in flat regions. In this paper, an improved non-local means algorithm based on local edge direction is presented for image denoising. In edge and structure regions, the steering kernel regression (SKR) coefficients are used to calculate the weights, and in flat regions the average kernel is used. Experiments show that the proposed algorithm can effectively protect edge and structure while removing noises better when compared with the CNLM algorithm. 展开更多
关键词 image denoising neighborhood filter non-local means (nlm) steering kernel regression (SKR)
下载PDF
Fast Non-Local Means Algorithm Based on Krawtchouk Moments 被引量:2
4
作者 吴一全 戴一冕 +1 位作者 殷骏 吴健生 《Transactions of Tianjin University》 EI CAS 2015年第2期104-112,共9页
Non-local means(NLM)method is a state-of-the-art denoising algorithm, which replaces each pixel with a weighted average of all the pixels in the image. However, the huge computational complexity makes it impractical f... Non-local means(NLM)method is a state-of-the-art denoising algorithm, which replaces each pixel with a weighted average of all the pixels in the image. However, the huge computational complexity makes it impractical for real applications. Thus, a fast non-local means algorithm based on Krawtchouk moments is proposed to improve the denoising performance and reduce the computing time. Krawtchouk moments of each image patch are calculated and used in the subsequent similarity measure in order to perform a weighted averaging. Instead of computing the Euclidean distance of two image patches, the similarity measure is obtained by low-order Krawtchouk moments, which can reduce a lot of computational complexity. Since Krawtchouk moments can extract local features and have a good antinoise ability, they can classify the useful information out of noise and provide an accurate similarity measure. Detailed experiments demonstrate that the proposed method outperforms the original NLM method and other moment-based methods according to a comprehensive consideration on subjective visual quality, method noise, peak signal to noise ratio(PSNR), structural similarity(SSIM) index and computing time. Most importantly, the proposed method is around 35 times faster than the original NLM method. 展开更多
关键词 IMAGE processing IMAGE DENOISING non-local means Krawtchouk MOMENTS SIMILARITY MEASURE
下载PDF
Improved Non-Local Means Algorithm for Image Denoising 被引量:4
5
作者 Lingli Huang 《Journal of Computer and Communications》 2015年第4期23-29,共7页
Image denoising technology is one of the forelands in the field of computer graphic and computer vision. Non-local means method is one of the great performing methods which arouse tremendous research. In this paper, a... Image denoising technology is one of the forelands in the field of computer graphic and computer vision. Non-local means method is one of the great performing methods which arouse tremendous research. In this paper, an improved weighted non-local means algorithm for image denoising is proposed. The non-local means denoising method replaces each pixel by the weighted average of pixels with the surrounding neighborhoods. The proposed method evaluates on testing images with various levels noise. Experimental results show that the algorithm improves the denoising performance. 展开更多
关键词 IMAGE DENOISING non-local means GAUSSIAN Noise
下载PDF
Two Modifications of Weight Calculation of the Non-Local Means Denoising Method
6
作者 Musab Elkheir Salih Xuming Zhang Mingyue Ding 《Engineering(科研)》 2013年第10期522-526,共5页
The non-local means (NLM) denoising method replaces each pixel by the weighted average of pixels with the sur-rounding neighborhoods. In this paper we employ a cosine weighting function instead of the original exponen... The non-local means (NLM) denoising method replaces each pixel by the weighted average of pixels with the sur-rounding neighborhoods. In this paper we employ a cosine weighting function instead of the original exponential func-tion to improve the efficiency of the NLM denoising method. The cosine function outperforms in the high level noise more than low level noise. To increase the performance more in the low level noise we calculate the neighborhood si-milarity weights in a lower-dimensional subspace using singular value decomposition (SVD). Experimental compari-sons between the proposed modifications against the original NLM algorithm demonstrate its superior denoising per-formance in terms of peak signal to noise ratio (PSNR) and histogram, using various test images corrupted by additive white Gaussian noise (AWGN). 展开更多
关键词 non-local means SINGULAR VALUE DECOMPOSITION WEIGHT Calculation
下载PDF
基于NL-Means的均值平移图像分割算法 被引量:2
7
作者 曾孝平 付勇 刘国金 《微计算机信息》 2009年第3期284-285,308,共3页
针对均值平移图象分割算法中,在密度中心点选择时的不足,本文采用一种新的寻找密度中心点的方法,同时,为了克服传统基于特征空间分析的图像分割方法对像素点空间关系考虑不够充分的缺陷,通过Non-local means算法,在距离公式中引入特征... 针对均值平移图象分割算法中,在密度中心点选择时的不足,本文采用一种新的寻找密度中心点的方法,同时,为了克服传统基于特征空间分析的图像分割方法对像素点空间关系考虑不够充分的缺陷,通过Non-local means算法,在距离公式中引入特征权参数,从而优化聚类效果。对图象分割结果分析表明了这种方法的有效性。 展开更多
关键词 特征空间分析 均值平移 non-local means算法
下载PDF
Improved Weight Function for Nonlocal Means Image Denoising 被引量:2
8
作者 XU Jianlou HAO Yan 《Journal of Donghua University(English Edition)》 EI CAS 2018年第5期394-398,共5页
The nonlocal means( NLM) has been widely used in image processing. In this paper,we introduce a modified weight function for NLM denoising, which will compute the nonlocal similarities among the pre-processing pixel p... The nonlocal means( NLM) has been widely used in image processing. In this paper,we introduce a modified weight function for NLM denoising, which will compute the nonlocal similarities among the pre-processing pixel patches instead of the commonly used similarity measure based on noisy observations. By the law of large number,the norm for the pre-processing pixel patches is closer to the norm of the original clean pixel patches,so the proposed weight functions are more optimized and the selected similar patches are more accurate. Experimental results indicate the proposed algorithm achieves better restored results compared to the classical NLM's method. 展开更多
关键词 image DENOISING NONLOCAL means(nlm) WEIGHT PATCH SIMILARITY
下载PDF
GAUSSIAN PRINCIPLE COMPONENTS FOR NONLOCAL MEANS IMAGE DENOISING
9
作者 Li Xiangping Wang Xiaotian Shi Guangming 《Journal of Electronics(China)》 2011年第4期539-547,共9页
NonLocal Means(NLM),taking fully advantage of image redundancy,has been proved to be very effective in noise removal.However,high computational load limits its wide application.Based on Principle Component Analysis(PC... NonLocal Means(NLM),taking fully advantage of image redundancy,has been proved to be very effective in noise removal.However,high computational load limits its wide application.Based on Principle Component Analysis(PCA),Principle Neighborhood Dictionary(PND) was proposed to reduce the computational load of NLM.Nevertheless,as the principle components in PND method are computed directly from noisy image neighborhoods,they are prone to be inaccurate due to the presence of noise.In this paper,an improved scheme for image denoising is proposed.This scheme is based on PND and uses preprocessing via Gaussian filter to eliminate the influence of noise.PCA is then used to project those filtered image neighborhood vectors onto a lower-dimensional space.With the preproc-essing process,the principle components computed are more accurate resulting in an improved de-noising performance.A comparison with some NLM based and state-of-art denoising methods shows that the proposed method performs well in terms of Peak Signal to Noise Ratio(PSNR) as well as image visual fidelity.The experimental results demonstrate that our method outperforms existing methods both subjectively and objectively. 展开更多
关键词 Image denoising NonLocal means(nlm) Gaussian filter Principle Component Analysis(PCA)
下载PDF
Non-Local DWI Image Super-Resolution with Joint Information Based on GPU Implementation
10
作者 Yanfen Guo Zhe Cui +2 位作者 Zhipeng Yang Xi Wu Shaahin Madani 《Computers, Materials & Continua》 SCIE EI 2019年第9期1205-1215,共11页
Since the spatial resolution of diffusion weighted magnetic resonance imaging(DWI)is subject to scanning time and other constraints,its spatial resolution is relatively limited.In view of this,a new non-local DWI imag... Since the spatial resolution of diffusion weighted magnetic resonance imaging(DWI)is subject to scanning time and other constraints,its spatial resolution is relatively limited.In view of this,a new non-local DWI image super-resolution with joint information method was proposed to improve the spatial resolution.Based on the non-local strategy,we use the joint information of adjacent scan directions to implement a new weighting scheme.The quantitative and qualitative comparison of the datasets of synthesized DWI and real DWI show that this method can significantly improve the resolution of DWI.However,the algorithm ran slowly because of the joint information.In order to apply the algorithm to the actual scene,we compare the proposed algorithm on CPU and GPU respectively.It is found that the processing time on GPU is much less than on CPU,and that the highest speedup ratio to the traditional algorithm is more than 26 times.It raises the possibility of applying reconstruction algorithms in actual workplaces. 展开更多
关键词 SUPER-RESOLUTION non-local means parallel computing GPU
下载PDF
Automatic segmentation of brain tissue based on improvedfuzzy c means clustering algorithm
11
作者 Zhuang Miao Xiaomei Lin Chengcheng Liu 《Journal of Biomedical Science and Engineering》 2011年第2期100-104,共5页
In medical images, exist often a lot of noise, the noise will seriously affect the accuracy of the segmentation results. The traditional standard fuzzy c-means(FCM) algorithm in image segmentation do not taken into ac... In medical images, exist often a lot of noise, the noise will seriously affect the accuracy of the segmentation results. The traditional standard fuzzy c-means(FCM) algorithm in image segmentation do not taken into account the relationship the adjacent pixels, which leads to the standard fuzzy c-means(FCM) algorithm is very sensitive to noise in the image. Proposed improvedfuzzy c-means(FCM) algorithm, taking both the local and non-local information into the standard fuzzy c-means(FCM) clustering algorithm. The ex-periment results can show that the improved algorithm can achieve better effect than other methods of brain tissue segmentation. 展开更多
关键词 LOCAL Information non-local mean BRAIN TISSUE SEGMENTATION
下载PDF
基于变尺寸窗口的多特征NLM图像去噪算法 被引量:1
12
作者 毛静 《计算机与数字工程》 2023年第5期1138-1143,1149,共7页
常规非局部均值算法的邻域相似性计算过程容易遭受噪声干扰,影响相似像素的权重分配,导致图像结构信息损失严重。针对上述问题,提出一种变尺寸窗口的多特征非局部均值算法,首先根据图像结构张量特征对图像区域进行划分,在不同特征的区... 常规非局部均值算法的邻域相似性计算过程容易遭受噪声干扰,影响相似像素的权重分配,导致图像结构信息损失严重。针对上述问题,提出一种变尺寸窗口的多特征非局部均值算法,首先根据图像结构张量特征对图像区域进行划分,在不同特征的区域内采用不同尺寸搜索窗口和自适应平滑滤波参数,结合灰度特征、多方向梯度特征和空间特征共同度量邻域相似性,再应用双核函数计算相似性权值,对目标区域的像素权值进行重分配,从而实现图像去噪目的。结果表明,新改进方法的图像峰值信噪比平均提高69%以上,结构相似度平均达到0.77以上。结论认为,相比常规非局部均值算法,新改进方法去噪能力强,边缘及纹理细节保护更好,具有良好的应用前景。 展开更多
关键词 非局部均值 多特征 双核函数 结构张量 搜索窗口 信噪比
下载PDF
自适应回波抵消中变步长NLMS算法 被引量:11
13
作者 张琦 王霞 +1 位作者 王磊 薛涛 《数据采集与处理》 CSCD 北大核心 2013年第1期64-68,共5页
在对变步长归一化最小均方误差(Variable step size normalized least mean square,VSS-NLMS)的几种算法以及各个算法在远端和双端通话模式下的性能分析比较的基础上,对NEW-NPVSS(NEW non-parametricVSS)算法进行了改进。在双端通话的... 在对变步长归一化最小均方误差(Variable step size normalized least mean square,VSS-NLMS)的几种算法以及各个算法在远端和双端通话模式下的性能分析比较的基础上,对NEW-NPVSS(NEW non-parametricVSS)算法进行了改进。在双端通话的情况下改进算法具有更好的收敛性;然后提出了基于滤波器系数梯度的变步长新算法,当滤波器系数梯度小于门限值时,采用固定步长更新滤波器系数。反之,则停止更新滤波器系数,并且用远端模式下的系数替代当前系数。仿真结果表明所提出的算法在远端通话模式下比其他VSS-NLMS算法具有更好的收敛性,在双端情况下具有比固定步长NLMS(Normalized least mean square)和SVSS(Simple VSS)更好的收敛性。 展开更多
关键词 回波抵消 归一化最小均方误差 变步长 滤波器系数梯度
下载PDF
基于融合距离的极化SAR图像非局部均值滤波
14
作者 曾顶 殷君君 杨健 《系统工程与电子技术》 EI CSCD 北大核心 2024年第5期1493-1502,共10页
在极化合成孔径雷达(synthetic aperture radar,SAR)图像降噪领域,常见的非局部均值滤波仅依靠像素间的统计距离进行相似性度量,忽略了像素点的空间信息。本文结合极化SAR数据统计特性和图像空间特征作为像素间的相似性度量,提出了一种... 在极化合成孔径雷达(synthetic aperture radar,SAR)图像降噪领域,常见的非局部均值滤波仅依靠像素间的统计距离进行相似性度量,忽略了像素点的空间信息。本文结合极化SAR数据统计特性和图像空间特征作为像素间的相似性度量,提出了一种利用融合距离来计算相邻窗口权重的方法——基于融合距离的非局部均值滤波器。融合距离的引入使得滤波器能够更全面的评估像素间的相似性,从而得到更合适的像素权重。此外,本方法还引进变异系数对邻域窗口的权重进行评估,通过该参数可以控制滤波的程度。在多幅极化SAR图像上的实验结果表明,所提出的滤波器能够在有效抑制斑点噪声的同时保留较为完整的图像边缘信息和极化散射特性。 展开更多
关键词 极化合成孔径雷达 非局部均值滤波 相似性度量 变异系数
下载PDF
NLMS与RLS算法的仿真比较及其在FECG提取中的应用 被引量:5
15
作者 刘世金 张榆锋 +1 位作者 龚璞 冯德鸿 《计算机仿真》 CSCD 2006年第4期78-81,共4页
该文通过计算机仿真对比研究了归一化最小均方误差(NLMS)和递推最小二乘(RLS)两种自适应滤波算法,并将这两种算法用于胎儿心电图仪的自适应滤波器仿真设计中。该方法通过自适应滤波拾取理想的参考信号,再与腹部混迭信号相减抵消母亲心电... 该文通过计算机仿真对比研究了归一化最小均方误差(NLMS)和递推最小二乘(RLS)两种自适应滤波算法,并将这两种算法用于胎儿心电图仪的自适应滤波器仿真设计中。该方法通过自适应滤波拾取理想的参考信号,再与腹部混迭信号相减抵消母亲心电图(MECG),从而提取出胎儿心电(FECG)信号。计算机仿真实验结果表明,这两种算法都能通过有效抑制MECG及其它各种干扰以实现FECG的检测。相比之下,RLS算法具有良好的应用性能,除收敛速度快于NLMS以及稳定性强外,还具有更高的起始收敛速率;更小的权失调噪声,更大的抑噪能力,但其计算复杂度高于NLMS算法。 展开更多
关键词 自适应滤波 胎儿心电 归一化最小均方误差算法 递推最小二乘算法 仿真
下载PDF
基于BM3D的脑MRI图像噪点剔除算法
16
作者 徐梦笔 何刚 《计算机技术与发展》 2024年第9期70-76,共7页
磁共振成像(Magnetic Resonance Imaging,MRI)已经成为一种常见的影像检查方式,MRI的去噪算法影响着MRI的成像效果。基于深度学习的MRI去噪算法需要一定量的数据,绝大部分基于非深度学习的MRI去噪算法都是将MRI数据转化为实数之后进行... 磁共振成像(Magnetic Resonance Imaging,MRI)已经成为一种常见的影像检查方式,MRI的去噪算法影响着MRI的成像效果。基于深度学习的MRI去噪算法需要一定量的数据,绝大部分基于非深度学习的MRI去噪算法都是将MRI数据转化为实数之后进行去噪的,针对复数MRI中的复数数据类型的算法也存在着失真的问题。因此,提出一种通过单张MRI脑图像的原始数据进行噪点剔除的算法,以此更好得去除图像噪声。该算法从MRI的原始数据出发,利用了MRI噪声分布性质和MRI脑图像的特点,以判断MRI图像中噪声明显的点,从而剔除MRI中特定的莱斯分布的噪声。并将所提出的算法结合了MRI去噪中常用的非局部平均算法(Non-Local Means denoising,NLM)与三维块匹配算法(Block-Matching and 3D filtering,BM3D),并和不使用该算法剔除噪点的NLM、BM3D进行了对比评估。对比结果表明,在噪声密度不同的多种情况下,该算法总能优化与之相结合的图像去噪算法,在不同的噪声情况下使峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)与结构相似性(Structural Similarity,SSIM)提高了1%~9%。最后将该算法结合BM3D,对比了DnCNN、低秩聚类算法(Weighted Nuclear Norm Minimization,WNNM)、BM3D、NLM等用于MRI去噪的算法,在莱斯噪声较多时,该算法在PSNR上有更好的表现。 展开更多
关键词 脑磁共振成像 噪声去除 莱斯分布 非局部平均算法 三维块匹配算法
下载PDF
基于NLMS的LFM信号自适应校正研究 被引量:2
17
作者 冯成燕 吴援明 《电子与信息学报》 EI CSCD 北大核心 2006年第12期2248-2251,共4页
该文针对雷达对抗中的LFM信号进行了自适应校正的研究,用NLMS算法对LFM信号的校正进行了建模与理论推导,求出了最优步长与最小误差的具体表达式,并进行了计算机仿真验证,表明了该理论分析的指导价值。
关键词 雷达信号处理 通道失衡 LFM信号 自适应校正 nlmS算法
下载PDF
两级NLMS自适应滤波的仿真与应用研究 被引量:1
18
作者 康春玉 章新华 《系统仿真学报》 CAS CSCD 北大核心 2009年第7期1999-2001,共3页
从含噪信号中恢复信号是信号处理领域的经典问题,根据自适应线谱增强器的原理,提出了基于两级NLMS自适应滤波器的噪声抵消模型和方法。并通过仿真实验和海上实录船舶辐射噪声识别实验对其进行了验证。仿真实验表明,该方法比基本的NLMS... 从含噪信号中恢复信号是信号处理领域的经典问题,根据自适应线谱增强器的原理,提出了基于两级NLMS自适应滤波器的噪声抵消模型和方法。并通过仿真实验和海上实录船舶辐射噪声识别实验对其进行了验证。仿真实验表明,该方法比基本的NLMS方法更能有效地消除信号中的噪声。对船舶辐射噪声的识别实验表明,当识别环境改变时,该方法仍能保证比较好的识别率,而且比基本的NLMS方法对环境改变更具有适应性。 展开更多
关键词 归一化最小均方 两级nlmS自适应滤波器 自适应噪声抵消 目标识别
下载PDF
基于局部均值分解和归一化最小均方的宽频振荡检测方法
19
作者 吴为 曾德辉 +2 位作者 聂欣昊 卢家俊 李超杰 《电力系统及其自动化学报》 CSCD 北大核心 2024年第3期48-58,共11页
为精确采集和分析电力系统宽频振荡信号,提出基于改进局部均值分解与归一化最小均方算法相结合的宽频振荡检测新方法。首先利用归一化最小均方算法对宽频振荡信号进行降噪处理,进而采用改进局部均值分解算法提取该降噪信号的乘积函数;... 为精确采集和分析电力系统宽频振荡信号,提出基于改进局部均值分解与归一化最小均方算法相结合的宽频振荡检测新方法。首先利用归一化最小均方算法对宽频振荡信号进行降噪处理,进而采用改进局部均值分解算法提取该降噪信号的乘积函数;然后对上述乘积函数分量进行希尔伯特变换,求解信号瞬时频率的高频突变点,实现对振荡起止时刻的准确定位。仿真实验表明,本文所提方法能准确求解宽频振荡信号,且在强噪声下仍具有很高的精度。 展开更多
关键词 强噪声干扰 归一化最小均方 局部均值分解 宽频振荡 希尔伯特变换
下载PDF
用于变压器局部放电在线监测的改进NLMS自适应滤波算法 被引量:7
20
作者 雷云飞 杨高才 刘盛祥 《电网技术》 EI CSCD 北大核心 2010年第8期165-169,共5页
局部放电在线监测对大型电力变压器的安全稳定运行具有重要意义,监测的关键是从强干扰信号中提取微弱的局部放电脉冲信号。最小均方自适应滤波算法具有结构简单、性能稳定等优点,广泛应用于自适应噪声对消中,但其收敛速度与误差存在矛盾... 局部放电在线监测对大型电力变压器的安全稳定运行具有重要意义,监测的关键是从强干扰信号中提取微弱的局部放电脉冲信号。最小均方自适应滤波算法具有结构简单、性能稳定等优点,广泛应用于自适应噪声对消中,但其收敛速度与误差存在矛盾,不能同时得到满足。基于此,提出了改进的归一化最小均方自适应滤波算法,在计算输入信号功率时,引入了遗忘因子,并应用符号函数替代步长校正因子。该算法计算量小,较好地解决了收敛速度与误差的矛盾,在变压器局部放电在线监测中应用效果良好。 展开更多
关键词 变压器局部放电 自适应滤波 遗忘因子 符号函数 归一化最小均方 在线监测
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部