This paper presents a high efficiency spread spectrum scheme using approximate orthogonal complex (AOC) sequences. In this scheme, the 64 AOC sequences picked up from 84 complex sequences space are employed for spread...This paper presents a high efficiency spread spectrum scheme using approximate orthogonal complex (AOC) sequences. In this scheme, the 64 AOC sequences picked up from 84 complex sequences space are employed for spreading spectrum. In modulation, 6 input bits is used to select one AOC sequence, and the selected sequence is then phase-rotated by another 2 input bits. In demodulator, a complex correlator detects the transmitted AOC sequence. Simulation results show that the proposed scheme has better BER performance than the existing complementary code keying (CCK) modulation scheme. For AOC, additional processing gain of 1.79dB can be obtained when the sequence length is 8.展开更多
This paper presents a novel scheme of high efficiency spreading spectrum modulation using double orthogonal complex sequences (DoCS). In this scheme, input data bit-stream is split into many groups with length M. Ea...This paper presents a novel scheme of high efficiency spreading spectrum modulation using double orthogonal complex sequences (DoCS). In this scheme, input data bit-stream is split into many groups with length M. Each group is then mapped into a word of width M and then utihzed to select one sequence from 2u-2 DoCS sequences each with length L. After that, the selected sequence is modulated on carrier in quadrature phase shift keying (QPSK) mode. In addition, a new method named forward phase correction (FPC) is put forward for carrier recovery. Theoretical analysis and bit-error-ratio(BER) experiment results indicate that the proposed scheme has better performance than the conventional direct sequence spread spectrum(DSSS) scheme both in bandwidth efficiency and processing gain of the receiver.展开更多
A closed form expression for the bit error rate (BER) performance of frequency domaindifferential demodulation(FDDD) for orthogonal frequency division multiplexing system in flat fadingchannel is derived.The performan...A closed form expression for the bit error rate (BER) performance of frequency domaindifferential demodulation(FDDD) for orthogonal frequency division multiplexing system in flat fadingchannel is derived.The performance is evaluated by computer simulation and compared with the timedomain differential demodulation(TDDD).The results indicate that the performance of FDDD is betterthan that of TDDD,and the lower band of BER in the former is lower than that of the latter.展开更多
针对雷达通信一体化信号雷达、通信性能无法兼顾的问题,提出了OFDM-CPM-LFM雷达通信一体化信号.首先,通过连续相位调制(Continuous Phase Modulation,CPM)对线性调频信号(Linear Frequency Modulation,LFM)进行调制,降低信号模糊函数旁...针对雷达通信一体化信号雷达、通信性能无法兼顾的问题,提出了OFDM-CPM-LFM雷达通信一体化信号.首先,通过连续相位调制(Continuous Phase Modulation,CPM)对线性调频信号(Linear Frequency Modulation,LFM)进行调制,降低信号模糊函数旁瓣提高雷达探测能力,在动态调制指数下均衡一体化信号性能;然后结合正交频分复用技术(Orthogonal Frequency Division Multiplexing,OFDM)提高通信传输速率,通过增加循环前、后缀降低干扰影响保证通信性能;最后,利用模糊函数与误码率分析一体化信号性能.仿真结果表明,所提一体化信号在保证雷达探测性能同时,能够实现高效通信,且误码率在信噪比10 dB时可达到10−5以下.展开更多
设计了一个以STM32F407为控制核心的简易频率特性测试仪系统,可以实现了在1 MHz^40 MHz频率范围内,对双端口网络的幅频和相频特性进行测量。利用模拟乘法器AD835和二阶有源低通滤波器设计出正交解调电路,然后由高精度ADC芯片ADS1271完...设计了一个以STM32F407为控制核心的简易频率特性测试仪系统,可以实现了在1 MHz^40 MHz频率范围内,对双端口网络的幅频和相频特性进行测量。利用模拟乘法器AD835和二阶有源低通滤波器设计出正交解调电路,然后由高精度ADC芯片ADS1271完成模数转换,最后由显示模块显示被测网络的幅频和相频特性。通过测试,本系统能正确的绘制被测网络的幅频特性曲线,显示其中心频率和3 d B带宽,并且其电压增益精度优于0.5 d B,相位精度优于5°。展开更多
文摘This paper presents a high efficiency spread spectrum scheme using approximate orthogonal complex (AOC) sequences. In this scheme, the 64 AOC sequences picked up from 84 complex sequences space are employed for spreading spectrum. In modulation, 6 input bits is used to select one AOC sequence, and the selected sequence is then phase-rotated by another 2 input bits. In demodulator, a complex correlator detects the transmitted AOC sequence. Simulation results show that the proposed scheme has better BER performance than the existing complementary code keying (CCK) modulation scheme. For AOC, additional processing gain of 1.79dB can be obtained when the sequence length is 8.
基金Union Innovation Found of Jiangsu Province(No. BY2009149)
文摘This paper presents a novel scheme of high efficiency spreading spectrum modulation using double orthogonal complex sequences (DoCS). In this scheme, input data bit-stream is split into many groups with length M. Each group is then mapped into a word of width M and then utihzed to select one sequence from 2u-2 DoCS sequences each with length L. After that, the selected sequence is modulated on carrier in quadrature phase shift keying (QPSK) mode. In addition, a new method named forward phase correction (FPC) is put forward for carrier recovery. Theoretical analysis and bit-error-ratio(BER) experiment results indicate that the proposed scheme has better performance than the conventional direct sequence spread spectrum(DSSS) scheme both in bandwidth efficiency and processing gain of the receiver.
基金Supported by National Natural Science Foundation of China(No.60272009)and National 863 Plan Project(NO.2001AA1230131)
文摘A closed form expression for the bit error rate (BER) performance of frequency domaindifferential demodulation(FDDD) for orthogonal frequency division multiplexing system in flat fadingchannel is derived.The performance is evaluated by computer simulation and compared with the timedomain differential demodulation(TDDD).The results indicate that the performance of FDDD is betterthan that of TDDD,and the lower band of BER in the former is lower than that of the latter.
文摘针对雷达通信一体化信号雷达、通信性能无法兼顾的问题,提出了OFDM-CPM-LFM雷达通信一体化信号.首先,通过连续相位调制(Continuous Phase Modulation,CPM)对线性调频信号(Linear Frequency Modulation,LFM)进行调制,降低信号模糊函数旁瓣提高雷达探测能力,在动态调制指数下均衡一体化信号性能;然后结合正交频分复用技术(Orthogonal Frequency Division Multiplexing,OFDM)提高通信传输速率,通过增加循环前、后缀降低干扰影响保证通信性能;最后,利用模糊函数与误码率分析一体化信号性能.仿真结果表明,所提一体化信号在保证雷达探测性能同时,能够实现高效通信,且误码率在信噪比10 dB时可达到10−5以下.
文摘设计了一个以STM32F407为控制核心的简易频率特性测试仪系统,可以实现了在1 MHz^40 MHz频率范围内,对双端口网络的幅频和相频特性进行测量。利用模拟乘法器AD835和二阶有源低通滤波器设计出正交解调电路,然后由高精度ADC芯片ADS1271完成模数转换,最后由显示模块显示被测网络的幅频和相频特性。通过测试,本系统能正确的绘制被测网络的幅频特性曲线,显示其中心频率和3 d B带宽,并且其电压增益精度优于0.5 d B,相位精度优于5°。