Energy saving income distribution mode is of great significance to the energy industry.With the continuous application of new technologies,the problem of excess energy saving income distribution has become one of the ...Energy saving income distribution mode is of great significance to the energy industry.With the continuous application of new technologies,the problem of excess energy saving income distribution has become one of the obstacles to the appreciation of energy performance.At present,the distribution of risk and income is mainly based on the contribution of risk and income,which has some limitations.The benefit distribution of energy saving negotiation between energy saving service companies and clients can be regarded as a bargaining process where an effective range satisfying both parties can be obtained.This provides a new perspective in solving the problem of excess energy saving income distribution in energy management contract projects.展开更多
This paper addresses the power con- trol problems of Cognitive Radio (CR) trader transmission power and interference tempera- ture constraints. First, we propose the interfer- ence constraint which ensures that the ...This paper addresses the power con- trol problems of Cognitive Radio (CR) trader transmission power and interference tempera- ture constraints. First, we propose the interfer- ence constraint which ensures that the Quality of Service (QoS) standards for primary users is considered and a non-cooperative game power control model. Based on the proposed model, we developed a logical utility function based on the Signal-to-Interference-Noise Ratio (S/NR) and a novel algorithm network power control. that is suitable for CR Then, the existence and uniqueness of the Nash Equilibrium (NE) in our utility function are proved by the principle of game theory and the corresponding optimi- zations. Compared to traditional algorithms, the proposed one could converge to an NE in 3-5 iterative operations by setting an appropriate pricing factor. Finally, simulation results ver- ified the stability and superiority of the novel algorithm in flat-fading channel environments.展开更多
In order to better accommodate heterogeneous quality of service (QoS) in wireless networks, an algorithm called QoS-aware power and admission controls (QAPAC) is proposed. The system is modeled as a non-cooperative ga...In order to better accommodate heterogeneous quality of service (QoS) in wireless networks, an algorithm called QoS-aware power and admission controls (QAPAC) is proposed. The system is modeled as a non-cooperative game where the users adjust their transmit powers to maximize the utility, thus restraining the interferences. By using adaptive utility functions and tunable pricing parameters according to QoS levels, this algorithm can well meet different QoS requirements and improve system capacity compared with those that ignore the QoS differences.展开更多
Hadoop is a well-known parallel computing system for distributed computing and large-scale data processes.“Straggling”tasks,however,have a serious impact on task allocation and scheduling in a Hadoop system.Speculat...Hadoop is a well-known parallel computing system for distributed computing and large-scale data processes.“Straggling”tasks,however,have a serious impact on task allocation and scheduling in a Hadoop system.Speculative Execution(SE)is an efficient method of processing“Straggling”Tasks by monitoring real-time running status of tasks and then selectively backing up“Stragglers”in another node to increase the chance to complete the entire mission early.Present speculative execution strategies meet challenges on misjudgement of“Straggling”tasks and improper selection of backup nodes,which leads to inefficient implementation of speculative executive processes.This paper has proposed an Optimized Resource Scheduling strategy for Speculative Execution(ORSE)by introducing non-cooperative game schemes.The ORSE transforms the resource scheduling of backup tasks into a multi-party non-cooperative game problem,where the tasks are regarded as game participants,whilst total task execution time of the entire cluster as the utility function.In that case,the most benefit strategy can be implemented in each computing node when the game reaches a Nash equilibrium point,i.e.,the final resource scheduling scheme to be obtained.The strategy has been implemented in Hadoop-2.x.Experimental results depict that the ORSE can maintain the efficiency of speculative executive processes and improve fault-tolerant and computation performance under the circumstances of Normal Load,Busy Load and Busy Load with Skewed Data.展开更多
Malicious attacks against data are unavoidable in the interconnected,open and shared Energy Internet(EI),Intrusion tolerant techniques are critical to the data security of EI.Existing intrusion tolerant techniques suf...Malicious attacks against data are unavoidable in the interconnected,open and shared Energy Internet(EI),Intrusion tolerant techniques are critical to the data security of EI.Existing intrusion tolerant techniques suffered from problems such as low adaptability,policy lag,and difficulty in determining the degree of tolerance.To address these issues,we propose a novel adaptive intrusion tolerance model based on game theory that enjoys two-fold ideas:(1)it constructs an improved replica of the intrusion tolerance model of the dynamic equation evolution game to induce incentive weights;and (2)it combines a tournament competition model with incentive weights to obtain optimal strategies for each stage of the game process.Extensive experiments are conducted in the IEEE 39-bus system,whose results demonstrate the feasibility of the incentive weights,confirm the proposed strategy strengthens the system’s ability to tolerate aggression,and improves the dynamic adaptability and response efficiency of the aggression-tolerant system in the case of limited resources.展开更多
The fuzzy non-cooperative game with fuzzy payoff function is studied. Based on fuzzy set theory with game theory, the fuzzy Nash equilibrium of fuzzy non-cooperative games is proposed. Most of researchers rank fuzzy n...The fuzzy non-cooperative game with fuzzy payoff function is studied. Based on fuzzy set theory with game theory, the fuzzy Nash equilibrium of fuzzy non-cooperative games is proposed. Most of researchers rank fuzzy number by its center of gravity or by the real number with its maximal membership. By reducing fuzzy number into a real number, we lose much fuzzy information that should be kept during the operations between fuzzy numbers. The fuzzy quantities or alternatives are ordered directly by Yuan's binary fuzzy ordering relation. In doing so, the existence of fuzzy Nash equilibrium for fuzzy non-cooperative games is shown based on the utility function and the crisp Nash theorem. Finally, an illustrative example in traffic flow patterns of equilibrium is given in order to show the detailed calculation process of fuzzy Nash equilibrium.展开更多
The malicious mining pool can sacrifice part of its revenue to employ the computing power of blockchain network.The employed computing power carries out the pool mining attacks on the attacked mining pool.To realize t...The malicious mining pool can sacrifice part of its revenue to employ the computing power of blockchain network.The employed computing power carries out the pool mining attacks on the attacked mining pool.To realize the win-win game between the malicious mining pool and the employee,the paper proposes an Employment Attack Pricing Algorithm(EAPA)of mining pools in blockchain based on game theory.In the EAPA,the paper uses mathematical formulas to express the revenue of malicious mining pools under the employment attack,the revenue increment of malicious mining pools,and the revenue of the employee.It establishes a game model between the malicious mining pool and the employee under the employment attack.Then,the paper proposes an optimal computing power price selection strategy of employment attack based on model derivation.In the strategy,the malicious mining pool analyzes the conditions for the employment attack,and uses the derivative method to find the optimal utilization value of computing power,employees analyze the conditions for accepting employment,and use the derivative method to find the optimal reward value of computing power.Finally,the strategy finds the optimal employment computing power price to realize Nash equilibrium between the malicious mining pool and the employee under the current computing power allocation.The simulation results show that the EAPA could find the employment computing power price that realizes the win-win game between the malicious mining pool and the employee.The EAPA also maximizes the unit computing power revenue of employment and the unit computing power revenue of honest mining in malicious mining pool at the same time.The EAPA outperforms the state-of-the-art methods such as SPSUCP,DPSACP,and FPSUCP.展开更多
With the ever-increasing popularity of Internet of Things(IoT),massive enterprises are attempting to encapsulate their developed outcomes into various lightweight Web Application Programming Interfaces(APIs)that can b...With the ever-increasing popularity of Internet of Things(IoT),massive enterprises are attempting to encapsulate their developed outcomes into various lightweight Web Application Programming Interfaces(APIs)that can be accessible remotely.In this context,finding and writing a list of existing Web APIs that can collectively meet the functional needs of software developers has become a promising approach to economically and easily develop successful mobile applications.However,the number and diversity of candidate IoT Web APIs places an additional burden on application developers’Web API selection decisions,as it is often a challenging task to simultaneously ensure the diversity and compatibility of the final set of Web APIs selected.Considering this challenge and latest successful applications of game theory in IoT,a Diversified and Compatible Web APIs Recommendation approach,namely DivCAR,is put forward in this paper.First of all,to achieve API diversity,DivCAR employs random walk sampling technique on a pre-built“API-API”correlation graph to generate diverse“API-API”correlation subgraphs.Afterwards,with the diverse“API-API”correlation subgraphs,the compatible Web APIs recommendation problem is modeled as a minimum group Steiner tree search problem.A sorted set of multiple compatible and diverse Web APIs are returned to the application developer by solving the minimum group Steiner tree search problem.At last,a set of experiments are designed and implemented on a real dataset crawled from www.programmableweb.com.Experimental results validate the effectiveness and efficiency of our proposed DivCAR approach in balancing the Web APIs recommendation diversity and compatibility.展开更多
To ensure the safe operation of industrial digital twins network and avoid the harm to the system caused by hacker invasion,a series of discussions on network security issues are carried out based on game theory.From ...To ensure the safe operation of industrial digital twins network and avoid the harm to the system caused by hacker invasion,a series of discussions on network security issues are carried out based on game theory.From the perspective of the life cycle of network vulnerabilities,mining and repairing vulnerabilities are analyzed by applying evolutionary game theory.The evolution process of knowledge sharing among white hats under various conditions is simulated,and a game model of the vulnerability patch cooperative development strategy among manufacturers is constructed.On this basis,the differential evolution is introduced into the update mechanism of the Wolf Colony Algorithm(WCA)to produce better replacement individuals with greater probability from the perspective of both attack and defense.Through the simulation experiment,it is found that the convergence speed of the probability(X)of white Hat 1 choosing the knowledge sharing policy is related to the probability(x0)of white Hat 2 choosing the knowledge sharing policy initially,and the probability(y0)of white hat 2 choosing the knowledge sharing policy initially.When y0?0.9,X converges rapidly in a relatively short time.When y0 is constant and x0 is small,the probability curve of the“cooperative development”strategy converges to 0.It is concluded that the higher the trust among the white hat members in the temporary team,the stronger their willingness to share knowledge,which is conducive to the mining of loopholes in the system.The greater the probability of a hacker attacking the vulnerability before it is fully disclosed,the lower the willingness of manufacturers to choose the"cooperative development"of vulnerability patches.Applying the improved wolf colonyco-evolution algorithm can obtain the equilibrium solution of the"attack and defense game model",and allocate the security protection resources according to the importance of nodes.This study can provide an effective solution to protect the network security for digital twins in the industry.展开更多
Existing researches on cyber attackdefense analysis have typically adopted stochastic game theory to model the problem for solutions,but the assumption of complete rationality is used in modeling,ignoring the informat...Existing researches on cyber attackdefense analysis have typically adopted stochastic game theory to model the problem for solutions,but the assumption of complete rationality is used in modeling,ignoring the information opacity in practical attack and defense scenarios,and the model and method lack accuracy.To such problem,we investigate network defense policy methods under finite rationality constraints and propose network defense policy selection algorithm based on deep reinforcement learning.Based on graph theoretical methods,we transform the decision-making problem into a path optimization problem,and use a compression method based on service node to map the network state.On this basis,we improve the A3C algorithm and design the DefenseA3C defense policy selection algorithm with online learning capability.The experimental results show that the model and method proposed in this paper can stably converge to a better network state after training,which is faster and more stable than the original A3C algorithm.Compared with the existing typical approaches,Defense-A3C is verified its advancement.展开更多
In this paper, we propose a non-cooperative differential game theory based resource allocation approach for the network security risk assessment. For the risk assessment, the resource will be used for risk assess, inc...In this paper, we propose a non-cooperative differential game theory based resource allocation approach for the network security risk assessment. For the risk assessment, the resource will be used for risk assess, including response cost and response negative cost. The whole assessment process is considered as a differential game for optimal resource control. The proposed scheme can be obtained through the Nash Equilibrium. It is proved that the game theory based algorithm is applicable and the optimal resource level can be achieved based on the proposed algorithm.展开更多
This paper presents a game theory-based method for predicting the outcomes of negotiation and group decision-making problems. We propose an extension to the BDM model to address problems where actors’ positions are d...This paper presents a game theory-based method for predicting the outcomes of negotiation and group decision-making problems. We propose an extension to the BDM model to address problems where actors’ positions are distributed over a position spectrum. We generalize the concept of position in the model to incorporate continuous positions for the actors, enabling them to have more flexibility in defining their targets. We explore different possible functions to study the role of the position function and discuss appropriate distance measures for computing the distance between the positions of actors. To validate the proposed extension, we demonstrate the trustworthiness of our model’s performance and interpretation by replicating the results based on data used in earlier studies.展开更多
Purpose-In order to solve the problem of inaccurate calculation of index weights,subjectivity and uncertainty of index assessment in the risk assessment process,this study aims to propose a scientific and reasonable c...Purpose-In order to solve the problem of inaccurate calculation of index weights,subjectivity and uncertainty of index assessment in the risk assessment process,this study aims to propose a scientific and reasonable centralized traffic control(CTC)system risk assessment method.Design/methodologylapproach-First,system-theoretic process analysis(STPA)is used to conduct risk analysis on the CTC system and constructs risk assessment indexes based on this analysis.Then,to enhance the accuracy of weight calculation,the fuzzy analytical hierarchy process(FAHP),fuzzy decision-making trial and evaluation laboratory(FDEMATEL)and entropy weight method are employed to calculate the subjective weight,relative weight and objective weight of each index.These three types of weights are combined using game theory to obtain the combined weight for each index.To reduce subjectivity and uncertainty in the assessment process,the backward cloud generator method is utilized to obtain the numerical character(NC)of the cloud model for each index.The NCs of the indexes are then weighted to derive the comprehensive cloud for risk assessment of the CTC system.This cloud model is used to obtain the CTC system's comprehensive risk assessment.The model's similarity measurement method gauges the likeness between the comprehensive risk assessment cloud and the risk standard cloud.Finally,this process yields the risk assessment results for the CTC system.Findings-The cloud model can handle the subjectivity and fuzziness in the risk assessment process well.The cloud model-based risk assessment method was applied to the CTC system risk assessment of a railway group and achieved good results.Originality/value-This study provides a cloud model-based method for risk assessment of CTC systems,which accurately calculates the weight of risk indexes and uses cloud models to reduce uncertainty and subjectivity in the assessment,achieving effective risk assessment of CTC systems.It can provide a reference and theoretical basis for risk management of the CTC system.展开更多
Game theory is explored via a maze application where combinatorial optimization occurs with the objective of traversing through a defined maze with an aim to enhance decision support and locate the optimal travel sequ...Game theory is explored via a maze application where combinatorial optimization occurs with the objective of traversing through a defined maze with an aim to enhance decision support and locate the optimal travel sequence while minimizing computation time. This combinatorial optimization approach is initially demonstrated by utilizing a traditional genetic algorithm (GA), followed by the incorporation of artificial intelligence utilizing embedded rules based on domain-specific knowledge. The aim of this initiative is to compare the results of the traditional and rule-based optimization approaches with results acquired through an intelligent crossover methodology. The intelligent crossover approach encompasses a two-dimensional GA encoding where a second chromosome string is introduced within the GA, offering a sophisticated means for chromosome crossover amongst selected parents. Additionally, parent selection intelligence is incorporated where the best-traversed paths or population members are retained and utilized as potential parents to mate with parents selected within a traditional GA methodology. A further enhancement regarding the utilization of saved optimal population members as potential parents is mathematically explored within this literature.展开更多
In 2014,Huang Kaihong,a professor at School of Foreign Languages and Cultures,Southwest University of Science and Technology,interviewed the Doctoral advisor Professor Nie Zhenzhao during the period of his academic vi...In 2014,Huang Kaihong,a professor at School of Foreign Languages and Cultures,Southwest University of Science and Technology,interviewed the Doctoral advisor Professor Nie Zhenzhao during the period of his academic visiting to Central China Normal University.As early as in 2005,Huang Kaihong conducted an interview with Professor Nie Zhenzhao on the topic of the general introduction of ethical literary criticism.So around 11 years later,the second interview mainly covers not only the ethical literary criticism theory,but the game theory and the relationship between them as well.Professor Nie thinks whether the game theory can be applied to literature research is still under discussion.The theory of ethical literary criticism is a kind of methodology based on science and it can get the attention of literary critics at home and abroad,which is because it fits the practical needs of literary criticism,draws the literary criticism away from only emphasizing criticism genres and the research of criticism terms,and pays attention to the true nature of the literary text in literature research.After consulting Professor Nie Zhenzhao about some related questions from the perspective of game theory.Huang Kaihong gets some significant information concerning literature research and understands the latest core terms and the concrete application method of ethical literary criticism,especially the relationship between the instructing and aesthetic functions of literature.展开更多
Given the challenges of manufacturing resource sharing and competition in the modern manufacturing industry,the coordinated scheduling problem of parallel machine production and transportation is investigated.The prob...Given the challenges of manufacturing resource sharing and competition in the modern manufacturing industry,the coordinated scheduling problem of parallel machine production and transportation is investigated.The problem takes into account the coordination of production and transportation before production as well as the disparities in machine spatial position and performance.A non-cooperative game model is established,considering the competition and self-interest behavior of jobs from different customers for machine resources.The job from different customers is mapped to the players in the game model,the corresponding optional processing machine and location are mapped to the strategy set,and the makespan of the job is mapped to the payoff.Then the solution of the scheduling model is transformed into the Nash equilibrium of the non-cooperative game model.A Nash equilibrium solution algorithm based on the genetic algorithm(NEGA)is designed,and the effective solution of approximate Nash equilibrium for the game model is realized.The fitness function,single-point crossover operator,and mutation operator are derived from the non-cooperative game model’s characteristics and the definition of Nash equilibrium.Rules are also designed to avoid the generation of invalid offspring chromosomes.The effectiveness of the proposed algorithm is demonstrated through numerical experiments of various sizes.Compared with other algorithms such as heuristic algorithms(FCFS,SPT,and LPT),the simulated annealing algorithm(SA),and the particle swarm optimization algorithm(PSO),experimental results show that the proposed NE-GA algorithm has obvious performance advantages.展开更多
The current electricity market fails to consider the energy consumption characteristics of transaction subjects such as virtual power plants.Besides,the game relationship between transaction subjects needs to be furth...The current electricity market fails to consider the energy consumption characteristics of transaction subjects such as virtual power plants.Besides,the game relationship between transaction subjects needs to be further explored.This paper proposes a Peer-to-Peer energy trading method for multi-virtual power plants based on a non-cooperative game.Firstly,a coordinated control model of public buildings is incorporated into the scheduling framework of the virtual power plant,considering the energy consumption characteristics of users.Secondly,the utility functions of multiple virtual power plants are analyzed,and a non-cooperative game model is established to explore the game relationship between electricity sellers in the Peer-to-Peer transaction process.Finally,the influence of user energy consumption characteristics on the virtual power plant operation and the Peer-to-Peer transaction process is analyzed by case studies.Furthermore,the effect of different parameters on the Nash equilibrium point is explored,and the influence factors of Peer-to-Peer transactions between virtual power plants are summarized.According to the obtained results,compared with the central air conditioning set as constant temperature control strategy,the flexible control strategy proposed in this paper improves the market power of each VPP and the overall revenue of the VPPs.In addition,the upper limit of the service quotation of the market operator have a great impact on the transaction mode of VPPs.When the service quotation decreases gradually,the P2P transaction between VPPs is more likely to occur.展开更多
A two-agent production and transportation coordinated scheduling problem in a single-machine environment is suggested to compete for one machine from different downstream production links or various consumers.The jobs...A two-agent production and transportation coordinated scheduling problem in a single-machine environment is suggested to compete for one machine from different downstream production links or various consumers.The jobs of two agents compete for the processing position on a machine,and after the pro-cessed,they compete for the transport position on a transport vehicle to be trans-ported to two agents.The two agents have different objective functions.The objective function of the first agent is the sum of the makespan and the total trans-portation time,whereas the objective function of the second agent is the sum of the total completion time and the total transportation time.Given the competition between two agents for machine resources and transportation resources,a non-cooperative game model with agents as game players is established.The job pro-cessing position and transportation position corresponding to the two agents are mapped as strategies,and the corresponding objective function is the utility func-tion.To solve the game model,an approximate Nash equilibrium solution algo-rithm based on an improved genetic algorithm(NE-IGA)is proposed.The genetic operation based on processing sequence and transportation sequence,as well as the fitness function based on Nash equilibrium definition,are designed based on the features of the two-agent production and transportation coordination scheduling problem.The effectiveness of the proposed algorithm is demonstrated through numerical experiments of various sizes.When compared to heuristic rules such as the Longest Processing Time first(LPT)and the Shortest Processing Time first(SPT),the objective function values of the two agents are reduced by 4.3%and 2.6% on average.展开更多
The integration of different heterogeneous access networks is one of the remarkable characteristics of the next generation network,in which users with multi-network interface terminals can independently select access ...The integration of different heterogeneous access networks is one of the remarkable characteristics of the next generation network,in which users with multi-network interface terminals can independently select access network to obtain the most desired service.A kind of unified quantification model of non-monotone quality of service(QoS) and a model of non-cooperative game between users and networks are proposed for heterogeneous network access selection.An optimal network pricing mechanism could be formulated by using a novel strategy which is used in this non-cooperative game model to balance the interests of both the users and the networks.This access network selection mechanism could select the most suitable network for users,and it also could provide the basis when formulating QoS standards in heterogeneous integrated networks.The simulation results show that this network selection decision-making algorithm can meet the users' demand for different levels service in different scenes and it can also avoid network congestion caused by unbalanced load.展开更多
A systematic and effective optimization is proposed for the design of a three-dimensional (3-D) vehicle suspension model with eight degrees of freedom (DOF), including vertical seat motion, vehicle suspension, pit...A systematic and effective optimization is proposed for the design of a three-dimensional (3-D) vehicle suspension model with eight degrees of freedom (DOF), including vertical seat motion, vehicle suspension, pitching and rolling motions, and vertical wheel motions using the evolutionary game theory. A new design of the passive suspension is aided by game theory to attain the best compromise between ride quality and suspension deflections. Extensive simulations are performed on three type road surface models A, B, C pavement grades based on the guidelines provided by ISO-2631 with the Matlab/Simulink environment. The preliminary results show that, when the passive suspension is optimized via the proposed approach, a substantial improvement in the vertical ride quality is obtained while keeping the suspension deflections within their allowable clearance when the vehicle moves at a constant velocity v=20 m/s, and the comfort performance of a suspension seat can be enhanced by 20%-30%.展开更多
文摘Energy saving income distribution mode is of great significance to the energy industry.With the continuous application of new technologies,the problem of excess energy saving income distribution has become one of the obstacles to the appreciation of energy performance.At present,the distribution of risk and income is mainly based on the contribution of risk and income,which has some limitations.The benefit distribution of energy saving negotiation between energy saving service companies and clients can be regarded as a bargaining process where an effective range satisfying both parties can be obtained.This provides a new perspective in solving the problem of excess energy saving income distribution in energy management contract projects.
基金partially supported by the National Natural Science Foundation of China under Grant No.61172073the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University under Grant No.2012D19+1 种基金the Fundamental Research Funds for the Central Universities,Beijing Jiaotong University under Grant No.2013JBZ01the Program for New Century Excellent Talents in University of Ministry of Education of China under Grant No.NCET-12-0766
文摘This paper addresses the power con- trol problems of Cognitive Radio (CR) trader transmission power and interference tempera- ture constraints. First, we propose the interfer- ence constraint which ensures that the Quality of Service (QoS) standards for primary users is considered and a non-cooperative game power control model. Based on the proposed model, we developed a logical utility function based on the Signal-to-Interference-Noise Ratio (S/NR) and a novel algorithm network power control. that is suitable for CR Then, the existence and uniqueness of the Nash Equilibrium (NE) in our utility function are proved by the principle of game theory and the corresponding optimi- zations. Compared to traditional algorithms, the proposed one could converge to an NE in 3-5 iterative operations by setting an appropriate pricing factor. Finally, simulation results ver- ified the stability and superiority of the novel algorithm in flat-fading channel environments.
基金the National Natural Science Foundation of China (No.60372055)the National Doctoral Foundation of China (No.20030698027)
文摘In order to better accommodate heterogeneous quality of service (QoS) in wireless networks, an algorithm called QoS-aware power and admission controls (QAPAC) is proposed. The system is modeled as a non-cooperative game where the users adjust their transmit powers to maximize the utility, thus restraining the interferences. By using adaptive utility functions and tunable pricing parameters according to QoS levels, this algorithm can well meet different QoS requirements and improve system capacity compared with those that ignore the QoS differences.
基金This work has received funding from the European Unions Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no.701697Major Program of the National Social Science Fund of China(Grant No.17ZDA092)+2 种基金Basic Research Programs(Natural Science Foundation)of Jiangsu Province(BK20180794)333 High-Level Talent Cultivation Project of Jiangsu Province(BRA2018332)333 High-Level Talent Cultivation Project of Jiangsu Province(BRA2018332)the PAPD fund.
文摘Hadoop is a well-known parallel computing system for distributed computing and large-scale data processes.“Straggling”tasks,however,have a serious impact on task allocation and scheduling in a Hadoop system.Speculative Execution(SE)is an efficient method of processing“Straggling”Tasks by monitoring real-time running status of tasks and then selectively backing up“Stragglers”in another node to increase the chance to complete the entire mission early.Present speculative execution strategies meet challenges on misjudgement of“Straggling”tasks and improper selection of backup nodes,which leads to inefficient implementation of speculative executive processes.This paper has proposed an Optimized Resource Scheduling strategy for Speculative Execution(ORSE)by introducing non-cooperative game schemes.The ORSE transforms the resource scheduling of backup tasks into a multi-party non-cooperative game problem,where the tasks are regarded as game participants,whilst total task execution time of the entire cluster as the utility function.In that case,the most benefit strategy can be implemented in each computing node when the game reaches a Nash equilibrium point,i.e.,the final resource scheduling scheme to be obtained.The strategy has been implemented in Hadoop-2.x.Experimental results depict that the ORSE can maintain the efficiency of speculative executive processes and improve fault-tolerant and computation performance under the circumstances of Normal Load,Busy Load and Busy Load with Skewed Data.
基金supported by the National Natural Science Foundation of China(Nos.51977113,62293500,62293501 and 62293505).
文摘Malicious attacks against data are unavoidable in the interconnected,open and shared Energy Internet(EI),Intrusion tolerant techniques are critical to the data security of EI.Existing intrusion tolerant techniques suffered from problems such as low adaptability,policy lag,and difficulty in determining the degree of tolerance.To address these issues,we propose a novel adaptive intrusion tolerance model based on game theory that enjoys two-fold ideas:(1)it constructs an improved replica of the intrusion tolerance model of the dynamic equation evolution game to induce incentive weights;and (2)it combines a tournament competition model with incentive weights to obtain optimal strategies for each stage of the game process.Extensive experiments are conducted in the IEEE 39-bus system,whose results demonstrate the feasibility of the incentive weights,confirm the proposed strategy strengthens the system’s ability to tolerate aggression,and improves the dynamic adaptability and response efficiency of the aggression-tolerant system in the case of limited resources.
基金supported by the National Natural Science Foundation of China (70771010)
文摘The fuzzy non-cooperative game with fuzzy payoff function is studied. Based on fuzzy set theory with game theory, the fuzzy Nash equilibrium of fuzzy non-cooperative games is proposed. Most of researchers rank fuzzy number by its center of gravity or by the real number with its maximal membership. By reducing fuzzy number into a real number, we lose much fuzzy information that should be kept during the operations between fuzzy numbers. The fuzzy quantities or alternatives are ordered directly by Yuan's binary fuzzy ordering relation. In doing so, the existence of fuzzy Nash equilibrium for fuzzy non-cooperative games is shown based on the utility function and the crisp Nash theorem. Finally, an illustrative example in traffic flow patterns of equilibrium is given in order to show the detailed calculation process of fuzzy Nash equilibrium.
基金funded by the“Ling Yan”Research and Development Project of Science Technology Department of Zhejiang Province of China under Grants No.2022C03122Public Welfare Technology Application and Research Projects of Science Technology Department of Zhejiang Province of China under Grants No.LGF22F020006 and LGF21F010004.
文摘The malicious mining pool can sacrifice part of its revenue to employ the computing power of blockchain network.The employed computing power carries out the pool mining attacks on the attacked mining pool.To realize the win-win game between the malicious mining pool and the employee,the paper proposes an Employment Attack Pricing Algorithm(EAPA)of mining pools in blockchain based on game theory.In the EAPA,the paper uses mathematical formulas to express the revenue of malicious mining pools under the employment attack,the revenue increment of malicious mining pools,and the revenue of the employee.It establishes a game model between the malicious mining pool and the employee under the employment attack.Then,the paper proposes an optimal computing power price selection strategy of employment attack based on model derivation.In the strategy,the malicious mining pool analyzes the conditions for the employment attack,and uses the derivative method to find the optimal utilization value of computing power,employees analyze the conditions for accepting employment,and use the derivative method to find the optimal reward value of computing power.Finally,the strategy finds the optimal employment computing power price to realize Nash equilibrium between the malicious mining pool and the employee under the current computing power allocation.The simulation results show that the EAPA could find the employment computing power price that realizes the win-win game between the malicious mining pool and the employee.The EAPA also maximizes the unit computing power revenue of employment and the unit computing power revenue of honest mining in malicious mining pool at the same time.The EAPA outperforms the state-of-the-art methods such as SPSUCP,DPSACP,and FPSUCP.
文摘With the ever-increasing popularity of Internet of Things(IoT),massive enterprises are attempting to encapsulate their developed outcomes into various lightweight Web Application Programming Interfaces(APIs)that can be accessible remotely.In this context,finding and writing a list of existing Web APIs that can collectively meet the functional needs of software developers has become a promising approach to economically and easily develop successful mobile applications.However,the number and diversity of candidate IoT Web APIs places an additional burden on application developers’Web API selection decisions,as it is often a challenging task to simultaneously ensure the diversity and compatibility of the final set of Web APIs selected.Considering this challenge and latest successful applications of game theory in IoT,a Diversified and Compatible Web APIs Recommendation approach,namely DivCAR,is put forward in this paper.First of all,to achieve API diversity,DivCAR employs random walk sampling technique on a pre-built“API-API”correlation graph to generate diverse“API-API”correlation subgraphs.Afterwards,with the diverse“API-API”correlation subgraphs,the compatible Web APIs recommendation problem is modeled as a minimum group Steiner tree search problem.A sorted set of multiple compatible and diverse Web APIs are returned to the application developer by solving the minimum group Steiner tree search problem.At last,a set of experiments are designed and implemented on a real dataset crawled from www.programmableweb.com.Experimental results validate the effectiveness and efficiency of our proposed DivCAR approach in balancing the Web APIs recommendation diversity and compatibility.
文摘To ensure the safe operation of industrial digital twins network and avoid the harm to the system caused by hacker invasion,a series of discussions on network security issues are carried out based on game theory.From the perspective of the life cycle of network vulnerabilities,mining and repairing vulnerabilities are analyzed by applying evolutionary game theory.The evolution process of knowledge sharing among white hats under various conditions is simulated,and a game model of the vulnerability patch cooperative development strategy among manufacturers is constructed.On this basis,the differential evolution is introduced into the update mechanism of the Wolf Colony Algorithm(WCA)to produce better replacement individuals with greater probability from the perspective of both attack and defense.Through the simulation experiment,it is found that the convergence speed of the probability(X)of white Hat 1 choosing the knowledge sharing policy is related to the probability(x0)of white Hat 2 choosing the knowledge sharing policy initially,and the probability(y0)of white hat 2 choosing the knowledge sharing policy initially.When y0?0.9,X converges rapidly in a relatively short time.When y0 is constant and x0 is small,the probability curve of the“cooperative development”strategy converges to 0.It is concluded that the higher the trust among the white hat members in the temporary team,the stronger their willingness to share knowledge,which is conducive to the mining of loopholes in the system.The greater the probability of a hacker attacking the vulnerability before it is fully disclosed,the lower the willingness of manufacturers to choose the"cooperative development"of vulnerability patches.Applying the improved wolf colonyco-evolution algorithm can obtain the equilibrium solution of the"attack and defense game model",and allocate the security protection resources according to the importance of nodes.This study can provide an effective solution to protect the network security for digital twins in the industry.
基金supported by the Major Science and Technology Programs in Henan Province(No.241100210100)The Project of Science and Technology in Henan Province(No.242102211068,No.232102210078)+2 种基金The Key Field Special Project of Guangdong Province(No.2021ZDZX1098)The China University Research Innovation Fund(No.2021FNB3001,No.2022IT020)Shenzhen Science and Technology Innovation Commission Stable Support Plan(No.20231128083944001)。
文摘Existing researches on cyber attackdefense analysis have typically adopted stochastic game theory to model the problem for solutions,but the assumption of complete rationality is used in modeling,ignoring the information opacity in practical attack and defense scenarios,and the model and method lack accuracy.To such problem,we investigate network defense policy methods under finite rationality constraints and propose network defense policy selection algorithm based on deep reinforcement learning.Based on graph theoretical methods,we transform the decision-making problem into a path optimization problem,and use a compression method based on service node to map the network state.On this basis,we improve the A3C algorithm and design the DefenseA3C defense policy selection algorithm with online learning capability.The experimental results show that the model and method proposed in this paper can stably converge to a better network state after training,which is faster and more stable than the original A3C algorithm.Compared with the existing typical approaches,Defense-A3C is verified its advancement.
基金supported by the China Postdoctoral Science Foundation(No.2015M570936)National Science Foundation Project of P.R.China(No.61501026,61272506)Fundamental Research Funds for the Central Universities(No.FRF-TP-15032A1)
文摘In this paper, we propose a non-cooperative differential game theory based resource allocation approach for the network security risk assessment. For the risk assessment, the resource will be used for risk assess, including response cost and response negative cost. The whole assessment process is considered as a differential game for optimal resource control. The proposed scheme can be obtained through the Nash Equilibrium. It is proved that the game theory based algorithm is applicable and the optimal resource level can be achieved based on the proposed algorithm.
文摘This paper presents a game theory-based method for predicting the outcomes of negotiation and group decision-making problems. We propose an extension to the BDM model to address problems where actors’ positions are distributed over a position spectrum. We generalize the concept of position in the model to incorporate continuous positions for the actors, enabling them to have more flexibility in defining their targets. We explore different possible functions to study the role of the position function and discuss appropriate distance measures for computing the distance between the positions of actors. To validate the proposed extension, we demonstrate the trustworthiness of our model’s performance and interpretation by replicating the results based on data used in earlier studies.
基金National Natural Science Foundation of China under Grant 62203468Technological Research and Development Program of China State Railway Group Co.,Ltd.under Grant J2023G007+2 种基金Young Elite Scientist Sponsorship Program by China Association for Science and Technology(CAST)under Grant 2022QNRC001Youth Talent Program Supported by China Railway SocietyResearch Program of Beijing Hua-Tie Information Technology Corporation Limited under Grant 2023HT02.
文摘Purpose-In order to solve the problem of inaccurate calculation of index weights,subjectivity and uncertainty of index assessment in the risk assessment process,this study aims to propose a scientific and reasonable centralized traffic control(CTC)system risk assessment method.Design/methodologylapproach-First,system-theoretic process analysis(STPA)is used to conduct risk analysis on the CTC system and constructs risk assessment indexes based on this analysis.Then,to enhance the accuracy of weight calculation,the fuzzy analytical hierarchy process(FAHP),fuzzy decision-making trial and evaluation laboratory(FDEMATEL)and entropy weight method are employed to calculate the subjective weight,relative weight and objective weight of each index.These three types of weights are combined using game theory to obtain the combined weight for each index.To reduce subjectivity and uncertainty in the assessment process,the backward cloud generator method is utilized to obtain the numerical character(NC)of the cloud model for each index.The NCs of the indexes are then weighted to derive the comprehensive cloud for risk assessment of the CTC system.This cloud model is used to obtain the CTC system's comprehensive risk assessment.The model's similarity measurement method gauges the likeness between the comprehensive risk assessment cloud and the risk standard cloud.Finally,this process yields the risk assessment results for the CTC system.Findings-The cloud model can handle the subjectivity and fuzziness in the risk assessment process well.The cloud model-based risk assessment method was applied to the CTC system risk assessment of a railway group and achieved good results.Originality/value-This study provides a cloud model-based method for risk assessment of CTC systems,which accurately calculates the weight of risk indexes and uses cloud models to reduce uncertainty and subjectivity in the assessment,achieving effective risk assessment of CTC systems.It can provide a reference and theoretical basis for risk management of the CTC system.
文摘Game theory is explored via a maze application where combinatorial optimization occurs with the objective of traversing through a defined maze with an aim to enhance decision support and locate the optimal travel sequence while minimizing computation time. This combinatorial optimization approach is initially demonstrated by utilizing a traditional genetic algorithm (GA), followed by the incorporation of artificial intelligence utilizing embedded rules based on domain-specific knowledge. The aim of this initiative is to compare the results of the traditional and rule-based optimization approaches with results acquired through an intelligent crossover methodology. The intelligent crossover approach encompasses a two-dimensional GA encoding where a second chromosome string is introduced within the GA, offering a sophisticated means for chromosome crossover amongst selected parents. Additionally, parent selection intelligence is incorporated where the best-traversed paths or population members are retained and utilized as potential parents to mate with parents selected within a traditional GA methodology. A further enhancement regarding the utilization of saved optimal population members as potential parents is mathematically explored within this literature.
文摘In 2014,Huang Kaihong,a professor at School of Foreign Languages and Cultures,Southwest University of Science and Technology,interviewed the Doctoral advisor Professor Nie Zhenzhao during the period of his academic visiting to Central China Normal University.As early as in 2005,Huang Kaihong conducted an interview with Professor Nie Zhenzhao on the topic of the general introduction of ethical literary criticism.So around 11 years later,the second interview mainly covers not only the ethical literary criticism theory,but the game theory and the relationship between them as well.Professor Nie thinks whether the game theory can be applied to literature research is still under discussion.The theory of ethical literary criticism is a kind of methodology based on science and it can get the attention of literary critics at home and abroad,which is because it fits the practical needs of literary criticism,draws the literary criticism away from only emphasizing criticism genres and the research of criticism terms,and pays attention to the true nature of the literary text in literature research.After consulting Professor Nie Zhenzhao about some related questions from the perspective of game theory.Huang Kaihong gets some significant information concerning literature research and understands the latest core terms and the concrete application method of ethical literary criticism,especially the relationship between the instructing and aesthetic functions of literature.
基金supported in part by the Project of Liaoning BaiQianWan Talents ProgramunderGrand No.2021921089the Science Research Foundation of EducationalDepartment of Liaoning Province under Grand No.LJKQZ2021057 and WJGD2020001the Key Program of Social Science Planning Foundation of Liaoning Province under Grant L21AGL017.
文摘Given the challenges of manufacturing resource sharing and competition in the modern manufacturing industry,the coordinated scheduling problem of parallel machine production and transportation is investigated.The problem takes into account the coordination of production and transportation before production as well as the disparities in machine spatial position and performance.A non-cooperative game model is established,considering the competition and self-interest behavior of jobs from different customers for machine resources.The job from different customers is mapped to the players in the game model,the corresponding optional processing machine and location are mapped to the strategy set,and the makespan of the job is mapped to the payoff.Then the solution of the scheduling model is transformed into the Nash equilibrium of the non-cooperative game model.A Nash equilibrium solution algorithm based on the genetic algorithm(NEGA)is designed,and the effective solution of approximate Nash equilibrium for the game model is realized.The fitness function,single-point crossover operator,and mutation operator are derived from the non-cooperative game model’s characteristics and the definition of Nash equilibrium.Rules are also designed to avoid the generation of invalid offspring chromosomes.The effectiveness of the proposed algorithm is demonstrated through numerical experiments of various sizes.Compared with other algorithms such as heuristic algorithms(FCFS,SPT,and LPT),the simulated annealing algorithm(SA),and the particle swarm optimization algorithm(PSO),experimental results show that the proposed NE-GA algorithm has obvious performance advantages.
基金supported by the Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.,China,under Grant 2021200.
文摘The current electricity market fails to consider the energy consumption characteristics of transaction subjects such as virtual power plants.Besides,the game relationship between transaction subjects needs to be further explored.This paper proposes a Peer-to-Peer energy trading method for multi-virtual power plants based on a non-cooperative game.Firstly,a coordinated control model of public buildings is incorporated into the scheduling framework of the virtual power plant,considering the energy consumption characteristics of users.Secondly,the utility functions of multiple virtual power plants are analyzed,and a non-cooperative game model is established to explore the game relationship between electricity sellers in the Peer-to-Peer transaction process.Finally,the influence of user energy consumption characteristics on the virtual power plant operation and the Peer-to-Peer transaction process is analyzed by case studies.Furthermore,the effect of different parameters on the Nash equilibrium point is explored,and the influence factors of Peer-to-Peer transactions between virtual power plants are summarized.According to the obtained results,compared with the central air conditioning set as constant temperature control strategy,the flexible control strategy proposed in this paper improves the market power of each VPP and the overall revenue of the VPPs.In addition,the upper limit of the service quotation of the market operator have a great impact on the transaction mode of VPPs.When the service quotation decreases gradually,the P2P transaction between VPPs is more likely to occur.
基金This work was supported in part by the Project of Liaoning BaiQianWan Talents Program under Grand No.2021921089the Science Research Foundation of Educational Department of Liaoning Province under Grand No.LJKQZ2021057 and WJGD2020001+2 种基金the Key Program of Social Science Planning Foundation of Liaoning Province under Grant L21AGL017the special project of SUT on serving local economic and social development decision-making under Grant FWDFGD2021019the“Double First-Class”Construction Project in Liaoning Province under Grant ZDZRGD2020037.
文摘A two-agent production and transportation coordinated scheduling problem in a single-machine environment is suggested to compete for one machine from different downstream production links or various consumers.The jobs of two agents compete for the processing position on a machine,and after the pro-cessed,they compete for the transport position on a transport vehicle to be trans-ported to two agents.The two agents have different objective functions.The objective function of the first agent is the sum of the makespan and the total trans-portation time,whereas the objective function of the second agent is the sum of the total completion time and the total transportation time.Given the competition between two agents for machine resources and transportation resources,a non-cooperative game model with agents as game players is established.The job pro-cessing position and transportation position corresponding to the two agents are mapped as strategies,and the corresponding objective function is the utility func-tion.To solve the game model,an approximate Nash equilibrium solution algo-rithm based on an improved genetic algorithm(NE-IGA)is proposed.The genetic operation based on processing sequence and transportation sequence,as well as the fitness function based on Nash equilibrium definition,are designed based on the features of the two-agent production and transportation coordination scheduling problem.The effectiveness of the proposed algorithm is demonstrated through numerical experiments of various sizes.When compared to heuristic rules such as the Longest Processing Time first(LPT)and the Shortest Processing Time first(SPT),the objective function values of the two agents are reduced by 4.3%and 2.6% on average.
基金Supported by the National Natural Science Foundation of China(No.61272120)the Science and Technology Project of Xi'an(No.CXY1117(5))
文摘The integration of different heterogeneous access networks is one of the remarkable characteristics of the next generation network,in which users with multi-network interface terminals can independently select access network to obtain the most desired service.A kind of unified quantification model of non-monotone quality of service(QoS) and a model of non-cooperative game between users and networks are proposed for heterogeneous network access selection.An optimal network pricing mechanism could be formulated by using a novel strategy which is used in this non-cooperative game model to balance the interests of both the users and the networks.This access network selection mechanism could select the most suitable network for users,and it also could provide the basis when formulating QoS standards in heterogeneous integrated networks.The simulation results show that this network selection decision-making algorithm can meet the users' demand for different levels service in different scenes and it can also avoid network congestion caused by unbalanced load.
基金Supported by Program for New Century Excellent Talents in University (070003)the Natural Science Foundation of Anhui Province (070414154)~~
文摘A systematic and effective optimization is proposed for the design of a three-dimensional (3-D) vehicle suspension model with eight degrees of freedom (DOF), including vertical seat motion, vehicle suspension, pitching and rolling motions, and vertical wheel motions using the evolutionary game theory. A new design of the passive suspension is aided by game theory to attain the best compromise between ride quality and suspension deflections. Extensive simulations are performed on three type road surface models A, B, C pavement grades based on the guidelines provided by ISO-2631 with the Matlab/Simulink environment. The preliminary results show that, when the passive suspension is optimized via the proposed approach, a substantial improvement in the vertical ride quality is obtained while keeping the suspension deflections within their allowable clearance when the vehicle moves at a constant velocity v=20 m/s, and the comfort performance of a suspension seat can be enhanced by 20%-30%.