The existing research results show that a fixed single station must conduct three consecutive frequency shift measurements and obtain the target’s moving speed by constructing two frequency difference equations. This...The existing research results show that a fixed single station must conduct three consecutive frequency shift measurements and obtain the target’s moving speed by constructing two frequency difference equations. This article proposes a new method that requires only two consecutive measurements. While using the azimuth measurement to obtain the angular difference between two radial distances, it also conducts two consecutive Doppler frequency shift measurements at the same target azimuth. On the basis of this measurement, a frequency difference equation is first constructed and solved jointly with the Doppler frequency shift equation. By eliminating the velocity variable and using the measured angular difference to obtain the target’s lead angle, the target’s velocity can be solved by using the Doppler frequency shift equation again. The new method avoids the condition that the target must move equidistantly, which not only provides an achievable method for engineering applications but also lays a good foundation for further exploring the use of steady-state signals to achieve passive positioning.展开更多
This work explores an alternative 3D geometry measurement method for non-cooperative spacecraft guiding navigation and proximity operations.From one snapshot of an unfocused light-field camera, the 3D point cloud of a...This work explores an alternative 3D geometry measurement method for non-cooperative spacecraft guiding navigation and proximity operations.From one snapshot of an unfocused light-field camera, the 3D point cloud of a non-cooperative spacecraft can be calculated from sub-aperture images with the epipolar plane image(EPI) based light-field rendering algorithm.A Chang'e-3 model(7.2 cm×5.6 cm×7.0 cm) is tested to validate the proposed technique.Three measurement distances(1.0 m, 1.2 m, 1.5 m) are considered to simulate different approaching stages.Measuring errors are quantified by comparing the light-field camera data with a high precision commercial laser scanner.The mean error distance for the three cases are 0.837 mm, 0.743 mm, and 0.973 mm respectively, indicating that the method can well reconstruct 3D geometry of a non-cooperative spacecraft with a densely distributed 3D point cloud and is thus promising in space-related missions.展开更多
Robotic systems are expected to play an increasingly important role in future space activities. The robotic on-orbital service, whose key is the capturing technology, becomes a research hot spot in recent years. This ...Robotic systems are expected to play an increasingly important role in future space activities. The robotic on-orbital service, whose key is the capturing technology, becomes a research hot spot in recent years. This paper studies the dynamics modeling and impedance control of a multi-arm free-flying space robotic system capturing a non-cooperative target. Firstly, a control-oriented dynamics model is essential in control algorithm design and code realization. Unlike a numerical algorithm, an analytical approach is suggested. Using a general and a quasi-coordinate Lagrangian formulation, the kinematics and dynamics equations are derived.Then, an impedance control algorithm is developed which allows coordinated control of the multiple manipulators to capture a target.Through enforcing a reference impedance, end-effectors behave like a mass-damper-spring system fixed in inertial space in reaction to any contact force between the capture hands and the target. Meanwhile, the position and the attitude of the base are maintained stably by using gas jet thrusters to work against the manipulators' reaction. Finally, a simulation by using a space robot with two manipulators and a free-floating non-cooperative target is illustrated to verify the effectiveness of the proposed method.展开更多
To satisfy the demand of measuring the velocity of ground moving target through unmanned aerial vehicle(UAV)electro-optical platform,two velocity measurement methods are proposed.Firstly,a velocity measurement method ...To satisfy the demand of measuring the velocity of ground moving target through unmanned aerial vehicle(UAV)electro-optical platform,two velocity measurement methods are proposed.Firstly,a velocity measurement method based on target localization is derived,using the position difference between two points with the advantages of easy deployment and realization.Then a mathematical model for measuring target velocity is built and described by 15 variables,i.e.UAV velocity,UAV attitude angular rate,camera direction angular rate and so on.Moreover,the causes of velocity measurement error are analyzed and a formula is derived for calculating the measurement error.Finally,the simulation results show that angular rate error has a strong influence on the velocity measurement accuracy,especially the UAV pitch angular rate error,roll angular rate error and the camera angular altitude rate error,thus indicating the direction for improving velocity measurement precision.展开更多
In the tracking problem for the maritime radiation source by a passive sensor,there are three main difficulties,i.e.,the poor observability of the radiation source,the detection uncertainty(false and missed detections...In the tracking problem for the maritime radiation source by a passive sensor,there are three main difficulties,i.e.,the poor observability of the radiation source,the detection uncertainty(false and missed detections)and the uncertainty of the target appearing/disappearing in the field of view.These difficulties can make the establishment or maintenance of the radiation source target track invalid.By incorporating the elevation information of the passive sensor into the automatic bearings-only tracking(BOT)and consolidating these uncertainties under the framework of random finite set(RFS),a novel approach for tracking maritime radiation source target with intermittent measurement was proposed.Under the RFS framework,the target state was represented as a set that can take on either an empty set or a singleton; meanwhile,the measurement uncertainty was modeled as a Bernoulli random finite set.Moreover,the elevation information of the sensor platform was introduced to ensure observability of passive measurements and obtain the unique target localization.Simulation experiments verify the validity of the proposed approach for tracking maritime radiation source and demonstrate the superiority of the proposed approach in comparison with the traditional integrated probabilistic data association(IPDA)method.The tracking performance under different conditions,particularly involving different existence probabilities and different appearance durations of the target,indicates that the method to solve our problem is robust and effective.展开更多
A passive compliant non-cooperative target capture mechanism is designed to maintain the non-cooperative target on-orbit. When the relative position between capture mechanism and satellite is confirmed,a pair of four-...A passive compliant non-cooperative target capture mechanism is designed to maintain the non-cooperative target on-orbit. When the relative position between capture mechanism and satellite is confirmed,a pair of four-bar linkages lock the docking ring,which is used for connecting the satellite and the rocket. The mathematical model of capture mechanism and capture space is built by the Denavit-Hartenberg(D-H)method,and the torque of each joint is analyzed by the Lagrange dynamic equation. Besides,the capture condition and the torque of every joint under different capture conditions are analyzed by simulation in MSC. Adams. The results indicate that the mechanism can capture the non-cooperative target satellite in a wide range. During the process of capture,the passive compliant mechanism at the bottom can increase capture space,thereby reducing the difficulty and enhance stability of the capture.展开更多
Robotic grippers have been used in industry as end-effectors but are usually limited to operations in pre-defined workspace.However,few devices can capture irregularly shaped dynamic targets in space,underwater and ot...Robotic grippers have been used in industry as end-effectors but are usually limited to operations in pre-defined workspace.However,few devices can capture irregularly shaped dynamic targets in space,underwater and other unstructured environments.In this paper,a novel continuum arm group mechanism inspired by the morphology and motions of sea anemones is proposed.It is able to dissipate and absorb the kinetic energy of a fast moving target in omni-direction and utilize multiple arms to wrap and lock the target without accurate positioning control.Wire-driven actuation systems are implemented in the individual continuum arms,achieving both bending motion and stiffness regulation.Through finite element method,the influence of different configurations of the continuum arm group on the capture performance is analyzed.A robotic prototype is constructed and tested,showing the presented arm group mechanism has high adaptability to capture targets with different sizes,shapes,and incident angles.展开更多
The distributed hybrid processing optimization problem of non-cooperative targets is an important research direction for future networked air-defense and anti-missile firepower systems. In this paper, the air-defense ...The distributed hybrid processing optimization problem of non-cooperative targets is an important research direction for future networked air-defense and anti-missile firepower systems. In this paper, the air-defense anti-missile targets defense problem is abstracted as a nonconvex constrained combinatorial optimization problem with the optimization objective of maximizing the degree of contribution of the processing scheme to non-cooperative targets, and the constraints mainly consider geographical conditions and anti-missile equipment resources. The grid discretization concept is used to partition the defense area into network nodes, and the overall defense strategy scheme is described as a nonlinear programming problem to solve the minimum defense cost within the maximum defense capability of the defense system network. In the solution of the minimum defense cost problem, the processing scheme, equipment coverage capability, constraints and node cost requirements are characterized, then a nonlinear mathematical model of the non-cooperative target distributed hybrid processing optimization problem is established, and a local optimal solution based on the sequential quadratic programming algorithm is constructed, and the optimal firepower processing scheme is given by using the sequential quadratic programming method containing non-convex quadratic equations and inequality constraints. Finally, the effectiveness of the proposed method is verified by simulation examples.展开更多
For localisation of unknown non-cooperative targets in space,the existence of interference points causes inaccuracy of pose estimation while utilizing point cloud registration.To address this issue,this paper proposes...For localisation of unknown non-cooperative targets in space,the existence of interference points causes inaccuracy of pose estimation while utilizing point cloud registration.To address this issue,this paper proposes a new iterative closest point(ICP)algorithm combined with distributed weights to intensify the dependability and robustness of the non-cooperative target localisation.As interference points in space have not yet been extensively studied,we classify them into two broad categories,far interference points and near interference points.For the former,the statistical outlier elimination algorithm is employed.For the latter,the Gaussian distributed weights,simultaneously valuing with the variation of the Euclidean distance from each point to the centroid,are commingled to the traditional ICP algorithm.In each iteration,the weight matrix W in connection with the overall localisation is obtained,and the singular value decomposition is adopted to accomplish high-precision estimation of the target pose.Finally,the experiments are implemented by shooting the satellite model and setting the position of interference points.The outcomes suggest that the proposed algorithm can effectively suppress interference points and enhance the accuracy of non-cooperative target pose estimation.When the interference point number reaches about 700,the average error of angle is superior to 0.88°.展开更多
Gives a new technique to measure the dynamic deformation behavior and strain development of a hollow steel projectile during its penetration of concrete targets. Direct strain measurement was performed by applying str...Gives a new technique to measure the dynamic deformation behavior and strain development of a hollow steel projectile during its penetration of concrete targets. Direct strain measurement was performed by applying strain gages attached to the inner walls of the hollow projectile, linked with on-board testing and storage recorder. This on-board test-record system is easy to operate, cost-effective and can provide reasonable, accurate and detailed information. Obverse ballistic experiments were carried out on ogival-nose hollow projectiles normally impacting concrete targets at velocities from 150 m/s to 300 m/s. The deformation process of projectiles was measured, recorded and played back. Profiles of voltage-time relationship were successively obtained and transfered to strain-time relationship with the aid of calibration tables. It was found that projectiles go through a series of compression and tension deformations intermittently. Relationships between strain development and projectile deformation process were discussed.展开更多
In the terahertz band,the dispersive characteristic of dielectric material is one of the major problems in the scaled radar cross section(RCS)measurement,which is inconsistent with the electrodynamics similitude deduc...In the terahertz band,the dispersive characteristic of dielectric material is one of the major problems in the scaled radar cross section(RCS)measurement,which is inconsistent with the electrodynamics similitude deducted according to the Maxwell’s equations.Based on the high-frequency estimation method of physical optics(PO),a scaled RCS measurement method for lossy objects is proposed through dynamically matching the reflection coefficients according to the distribution of the object facets.Simulations of the model of SLICY are conducted,and the inversed RCS of the lossy prototype is obtained using the proposed method.Comparing the inversed RCS with the calculated results,the validity of the proposed method is demonstrated.The proposed method provides an effective solution to the scaled RCS measurement for lossy objects in the THz band.展开更多
Single-camera mobile-vision coordinate measurement is one of the primary methods of 3D-coordinate vision measurement, and coded target plays an important role in this system. A multifunctional coded target and its rec...Single-camera mobile-vision coordinate measurement is one of the primary methods of 3D-coordinate vision measurement, and coded target plays an important role in this system. A multifunctional coded target and its recognition algorithm is developed, which can realize automatic match of feature points, calculation of camera initial exterior orientation and space scale factor constraint in measurement system. The uniqueness and scalability of coding are guaranteed by the rational arrangement of code bits. The recognition of coded targets is realized by cross-ratio invariance restriction, space coordinates transform of feature points based on spacial pose estimation algorithm, recognition of code bits and computation of coding values. The experiment results demonstrate the uniqueness of the coding form and the reliability of recognition.展开更多
We present a novel precise angle measurement scheme based on parallel multiplex laser feedback interferometry (PLFI), which outputs two parallel laser beams and thus their displacement difference reflects the angle ...We present a novel precise angle measurement scheme based on parallel multiplex laser feedback interferometry (PLFI), which outputs two parallel laser beams and thus their displacement difference reflects the angle variation of the target. Due to its ultrahigh sensitivity to the feedback light, PLFI realizes the direct non-contact measurement of non- cooperative targets. Experimental results show that PLFI has an accuracy of 8" within a range of 1400". The yaw of a guide is also measured and the experimental results agree with those of the dual-frequency laser interferometer Agilent 5529A.展开更多
A new distributed fusion method of radar/infrared (IR) tracking system based on separation and combination of the measurements is proposed by analyzing the influence of rate measurement. The rate information separat...A new distributed fusion method of radar/infrared (IR) tracking system based on separation and combination of the measurements is proposed by analyzing the influence of rate measurement. The rate information separated from the radar measurements together with measurements of IR form a pseudo vector of IR, and the corresponding filter is designed. The results indicate that the method not only makes a great improvement to the local tracker's performance, but also improves the global tracking precision efficiently.展开更多
In an active radar-tracking system,the target-motion model is usually modeled in the Cartesian coordinates,while the radar measurement usually is obtained in polar/spherical coordinates.Therefore the target-tracking p...In an active radar-tracking system,the target-motion model is usually modeled in the Cartesian coordinates,while the radar measurement usually is obtained in polar/spherical coordinates.Therefore the target-tracking problem in the Cartesian coordinates becomes a nonlinear state estimation problem.A number of measurement-conversion techniques,which are based on position measurements,are widely used such that the Kalman filter can be used in the Cartesian coordinates.However,they have fundamental limitations to result in filtering performance degradation.In fact,in addition to position measurements,the Doppler measurement or range rate,containing information of target velocity,has the potential capability to improve the tracking performance.A filter is proposed that can use converted Doppler measurements(i.e.the product of the range measurements and Doppler measurements) in the Cartesian coordinates.The novel filter is theoretically optimal in the rule of the best linear unbiased estimation among all linear unbiased filters in the Cartesian coordinates,and is free of the fundamental limitations of the measurement-conversion approach.Based on simulation experiments,an approximate,recursive implementation of the novel filter is compared with those obtained by four state-of-the-art conversion techniques recently.Simulation results demonstrate the effectiveness of the proposed filter.展开更多
Infrared(IR) small target detection is one of the key technologies of infrared search and track(IRST)systems. Existing methods have some limitations in detection performance, especially when the target size is irregul...Infrared(IR) small target detection is one of the key technologies of infrared search and track(IRST)systems. Existing methods have some limitations in detection performance, especially when the target size is irregular or the background is complex. In this paper, we propose a pixel-level local contrast measure(PLLCM), which can subdivide small targets and backgrounds at pixel level simultaneously.With pixel-level segmentation, the difference between the target and the background becomes more obvious, which helps to improve the detection performance. First, we design a multiscale sliding window to quickly extract candidate target pixels. Then, a local window based on random walker(RW) is designed for pixel-level target segmentation. After that, PLLCM incorporating probability weights and scale constraints is proposed to accurately measure local contrast and suppress various types of background interference. Finally, an adaptive threshold operation is applied to separate the target from the PLLCM enhanced map. Experimental results show that the proposed method has a higher detection rate and a lower false alarm rate than the baseline algorithms, while achieving a high speed.展开更多
In some tracking applications,due to the sensor characteristic,only range measurements are available.If this is the case,due to the lack of full position measurements,the observability of Cartesian states(e.g.,positio...In some tracking applications,due to the sensor characteristic,only range measurements are available.If this is the case,due to the lack of full position measurements,the observability of Cartesian states(e.g.,position and velocity)are limited to particular cases.For general cases,the range measurements can be utilized by developing a state estimation algorithm in range-Doppler(R-D)plane to obtain accurate range and Doppler estimates.In this paper,a state estimation method based on the proper dynamic model in the R-D plane is proposed.The unscented Kalman filter is employed to handle the strong nonlinearity in the dynamic model.Two filtering initialization methods are derived to extract the initial state estimate and the initial covariance in the R-D plane from the first several range measurements.One is derived based on the well-known two-point differencing method.The other incorporates the correct dynamic model information and uses the unscented transformation method to obtain the initial state estimates and covariance,resulting in a model-based method,which capitalizes the model information to yield better performance.Monte Carlo simulation results are provided to illustrate the effectiveness and superior performance of the proposed state estimation and filter initialization methods.展开更多
Users of the digital image correlation method are faced with the problem of poor operability,low repeatability,and lack of standardized specifications for spraying speckles.To solve the problem,the research proposed a...Users of the digital image correlation method are faced with the problem of poor operability,low repeatability,and lack of standardized specifications for spraying speckles.To solve the problem,the research proposed a rock deformation measurement method that obviates the need to spray speckles.A local binary model was established by using the local binary pattern(LBP)operator based on deep texture features on rock surfaces.The resulting LBP digital speckle pattern can substitute artificial speckle patterns and demonstrates high quality and strong applicability.Based on the LBP digital speckle pattern,the target tracking algorithm was employed to achieve non-contact measurement of the dynamic displacements of rocks.The feasibility and effectiveness of the algorithm in practical application were verified by conducting shear tests on granite and siltstone.Test results show that the deformation characteristics in the displacement nephograms are in line with the measured data pertaining to rock fracturing and conform to the basic characteristics of the shear failure of rocks.The deformation measurement method based on surface texture information can realize non-contact displacement measurement of rocks under conditions without speckles:this obviates the influence of the quality of sprayed speckles on the accuracy of the measurement of deformation.展开更多
文摘The existing research results show that a fixed single station must conduct three consecutive frequency shift measurements and obtain the target’s moving speed by constructing two frequency difference equations. This article proposes a new method that requires only two consecutive measurements. While using the azimuth measurement to obtain the angular difference between two radial distances, it also conducts two consecutive Doppler frequency shift measurements at the same target azimuth. On the basis of this measurement, a frequency difference equation is first constructed and solved jointly with the Doppler frequency shift equation. By eliminating the velocity variable and using the measured angular difference to obtain the target’s lead angle, the target’s velocity can be solved by using the Doppler frequency shift equation again. The new method avoids the condition that the target must move equidistantly, which not only provides an achievable method for engineering applications but also lays a good foundation for further exploring the use of steady-state signals to achieve passive positioning.
文摘This work explores an alternative 3D geometry measurement method for non-cooperative spacecraft guiding navigation and proximity operations.From one snapshot of an unfocused light-field camera, the 3D point cloud of a non-cooperative spacecraft can be calculated from sub-aperture images with the epipolar plane image(EPI) based light-field rendering algorithm.A Chang'e-3 model(7.2 cm×5.6 cm×7.0 cm) is tested to validate the proposed technique.Three measurement distances(1.0 m, 1.2 m, 1.5 m) are considered to simulate different approaching stages.Measuring errors are quantified by comparing the light-field camera data with a high precision commercial laser scanner.The mean error distance for the three cases are 0.837 mm, 0.743 mm, and 0.973 mm respectively, indicating that the method can well reconstruct 3D geometry of a non-cooperative spacecraft with a densely distributed 3D point cloud and is thus promising in space-related missions.
基金supported by the National Natural Science Foundation of China (61673009)。
文摘Robotic systems are expected to play an increasingly important role in future space activities. The robotic on-orbital service, whose key is the capturing technology, becomes a research hot spot in recent years. This paper studies the dynamics modeling and impedance control of a multi-arm free-flying space robotic system capturing a non-cooperative target. Firstly, a control-oriented dynamics model is essential in control algorithm design and code realization. Unlike a numerical algorithm, an analytical approach is suggested. Using a general and a quasi-coordinate Lagrangian formulation, the kinematics and dynamics equations are derived.Then, an impedance control algorithm is developed which allows coordinated control of the multiple manipulators to capture a target.Through enforcing a reference impedance, end-effectors behave like a mass-damper-spring system fixed in inertial space in reaction to any contact force between the capture hands and the target. Meanwhile, the position and the attitude of the base are maintained stably by using gas jet thrusters to work against the manipulators' reaction. Finally, a simulation by using a space robot with two manipulators and a free-floating non-cooperative target is illustrated to verify the effectiveness of the proposed method.
基金supported by the Aeronautical Science Foundation of China(No.61106018)
文摘To satisfy the demand of measuring the velocity of ground moving target through unmanned aerial vehicle(UAV)electro-optical platform,two velocity measurement methods are proposed.Firstly,a velocity measurement method based on target localization is derived,using the position difference between two points with the advantages of easy deployment and realization.Then a mathematical model for measuring target velocity is built and described by 15 variables,i.e.UAV velocity,UAV attitude angular rate,camera direction angular rate and so on.Moreover,the causes of velocity measurement error are analyzed and a formula is derived for calculating the measurement error.Finally,the simulation results show that angular rate error has a strong influence on the velocity measurement accuracy,especially the UAV pitch angular rate error,roll angular rate error and the camera angular altitude rate error,thus indicating the direction for improving velocity measurement precision.
基金Project(61101186)supported by the National Natural Science Foundation of China
文摘In the tracking problem for the maritime radiation source by a passive sensor,there are three main difficulties,i.e.,the poor observability of the radiation source,the detection uncertainty(false and missed detections)and the uncertainty of the target appearing/disappearing in the field of view.These difficulties can make the establishment or maintenance of the radiation source target track invalid.By incorporating the elevation information of the passive sensor into the automatic bearings-only tracking(BOT)and consolidating these uncertainties under the framework of random finite set(RFS),a novel approach for tracking maritime radiation source target with intermittent measurement was proposed.Under the RFS framework,the target state was represented as a set that can take on either an empty set or a singleton; meanwhile,the measurement uncertainty was modeled as a Bernoulli random finite set.Moreover,the elevation information of the sensor platform was introduced to ensure observability of passive measurements and obtain the unique target localization.Simulation experiments verify the validity of the proposed approach for tracking maritime radiation source and demonstrate the superiority of the proposed approach in comparison with the traditional integrated probabilistic data association(IPDA)method.The tracking performance under different conditions,particularly involving different existence probabilities and different appearance durations of the target,indicates that the method to solve our problem is robust and effective.
基金supported by the National Natural Science Foundation of China(No.51675264)
文摘A passive compliant non-cooperative target capture mechanism is designed to maintain the non-cooperative target on-orbit. When the relative position between capture mechanism and satellite is confirmed,a pair of four-bar linkages lock the docking ring,which is used for connecting the satellite and the rocket. The mathematical model of capture mechanism and capture space is built by the Denavit-Hartenberg(D-H)method,and the torque of each joint is analyzed by the Lagrange dynamic equation. Besides,the capture condition and the torque of every joint under different capture conditions are analyzed by simulation in MSC. Adams. The results indicate that the mechanism can capture the non-cooperative target satellite in a wide range. During the process of capture,the passive compliant mechanism at the bottom can increase capture space,thereby reducing the difficulty and enhance stability of the capture.
基金Supported by National Key R&D Program of China(Grant Nos.2019YFB1309800,2018YFB1304600)National Natural Science Foundation of China(Grant No.51875393)State Key Laboratory of Robotics Foundation-China(Grant No.2019-O04).
文摘Robotic grippers have been used in industry as end-effectors but are usually limited to operations in pre-defined workspace.However,few devices can capture irregularly shaped dynamic targets in space,underwater and other unstructured environments.In this paper,a novel continuum arm group mechanism inspired by the morphology and motions of sea anemones is proposed.It is able to dissipate and absorb the kinetic energy of a fast moving target in omni-direction and utilize multiple arms to wrap and lock the target without accurate positioning control.Wire-driven actuation systems are implemented in the individual continuum arms,achieving both bending motion and stiffness regulation.Through finite element method,the influence of different configurations of the continuum arm group on the capture performance is analyzed.A robotic prototype is constructed and tested,showing the presented arm group mechanism has high adaptability to capture targets with different sizes,shapes,and incident angles.
基金supported by the National Natural Science Foundation of China (61903025)the Fundamental Research Funds for the Cent ral Universities (FRF-IDRY-20-013)。
文摘The distributed hybrid processing optimization problem of non-cooperative targets is an important research direction for future networked air-defense and anti-missile firepower systems. In this paper, the air-defense anti-missile targets defense problem is abstracted as a nonconvex constrained combinatorial optimization problem with the optimization objective of maximizing the degree of contribution of the processing scheme to non-cooperative targets, and the constraints mainly consider geographical conditions and anti-missile equipment resources. The grid discretization concept is used to partition the defense area into network nodes, and the overall defense strategy scheme is described as a nonlinear programming problem to solve the minimum defense cost within the maximum defense capability of the defense system network. In the solution of the minimum defense cost problem, the processing scheme, equipment coverage capability, constraints and node cost requirements are characterized, then a nonlinear mathematical model of the non-cooperative target distributed hybrid processing optimization problem is established, and a local optimal solution based on the sequential quadratic programming algorithm is constructed, and the optimal firepower processing scheme is given by using the sequential quadratic programming method containing non-convex quadratic equations and inequality constraints. Finally, the effectiveness of the proposed method is verified by simulation examples.
基金supported by the National Natural Science Foundation of China(51875535)the Natural Science Foundation for Young Scientists of Shanxi Province(201901D211242201701D221017)。
文摘For localisation of unknown non-cooperative targets in space,the existence of interference points causes inaccuracy of pose estimation while utilizing point cloud registration.To address this issue,this paper proposes a new iterative closest point(ICP)algorithm combined with distributed weights to intensify the dependability and robustness of the non-cooperative target localisation.As interference points in space have not yet been extensively studied,we classify them into two broad categories,far interference points and near interference points.For the former,the statistical outlier elimination algorithm is employed.For the latter,the Gaussian distributed weights,simultaneously valuing with the variation of the Euclidean distance from each point to the centroid,are commingled to the traditional ICP algorithm.In each iteration,the weight matrix W in connection with the overall localisation is obtained,and the singular value decomposition is adopted to accomplish high-precision estimation of the target pose.Finally,the experiments are implemented by shooting the satellite model and setting the position of interference points.The outcomes suggest that the proposed algorithm can effectively suppress interference points and enhance the accuracy of non-cooperative target pose estimation.When the interference point number reaches about 700,the average error of angle is superior to 0.88°.
基金Supported by the National Natural Science Foundation of China (Nos. 11105081, 11275110 and 11375103) and the National Energy Application Project For Research and Demonstration (No. 20131660315).
文摘Gives a new technique to measure the dynamic deformation behavior and strain development of a hollow steel projectile during its penetration of concrete targets. Direct strain measurement was performed by applying strain gages attached to the inner walls of the hollow projectile, linked with on-board testing and storage recorder. This on-board test-record system is easy to operate, cost-effective and can provide reasonable, accurate and detailed information. Obverse ballistic experiments were carried out on ogival-nose hollow projectiles normally impacting concrete targets at velocities from 150 m/s to 300 m/s. The deformation process of projectiles was measured, recorded and played back. Profiles of voltage-time relationship were successively obtained and transfered to strain-time relationship with the aid of calibration tables. It was found that projectiles go through a series of compression and tension deformations intermittently. Relationships between strain development and projectile deformation process were discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.61871386,61971427,62035014,and 61921001)the Natural Science Fund for Distinguished Young Scholars of Hunan Province,China(Grant No.2019JJ20022)。
文摘In the terahertz band,the dispersive characteristic of dielectric material is one of the major problems in the scaled radar cross section(RCS)measurement,which is inconsistent with the electrodynamics similitude deducted according to the Maxwell’s equations.Based on the high-frequency estimation method of physical optics(PO),a scaled RCS measurement method for lossy objects is proposed through dynamically matching the reflection coefficients according to the distribution of the object facets.Simulations of the model of SLICY are conducted,and the inversed RCS of the lossy prototype is obtained using the proposed method.Comparing the inversed RCS with the calculated results,the validity of the proposed method is demonstrated.The proposed method provides an effective solution to the scaled RCS measurement for lossy objects in the THz band.
文摘Single-camera mobile-vision coordinate measurement is one of the primary methods of 3D-coordinate vision measurement, and coded target plays an important role in this system. A multifunctional coded target and its recognition algorithm is developed, which can realize automatic match of feature points, calculation of camera initial exterior orientation and space scale factor constraint in measurement system. The uniqueness and scalability of coding are guaranteed by the rational arrangement of code bits. The recognition of coded targets is realized by cross-ratio invariance restriction, space coordinates transform of feature points based on spacial pose estimation algorithm, recognition of code bits and computation of coding values. The experiment results demonstrate the uniqueness of the coding form and the reliability of recognition.
基金supported by the National Natural Science Foundation of China(Grant No.61036016)
文摘We present a novel precise angle measurement scheme based on parallel multiplex laser feedback interferometry (PLFI), which outputs two parallel laser beams and thus their displacement difference reflects the angle variation of the target. Due to its ultrahigh sensitivity to the feedback light, PLFI realizes the direct non-contact measurement of non- cooperative targets. Experimental results show that PLFI has an accuracy of 8" within a range of 1400". The yaw of a guide is also measured and the experimental results agree with those of the dual-frequency laser interferometer Agilent 5529A.
基金supported by the National Natural Science Foundation of China (60574022).
文摘A new distributed fusion method of radar/infrared (IR) tracking system based on separation and combination of the measurements is proposed by analyzing the influence of rate measurement. The rate information separated from the radar measurements together with measurements of IR form a pseudo vector of IR, and the corresponding filter is designed. The results indicate that the method not only makes a great improvement to the local tracker's performance, but also improves the global tracking precision efficiently.
基金supported by the National Natural Science Foundation of China(5130712811571133)+1 种基金the National Natural Science Foundation of Hubei Province(2013CFB437)the Natural Science Foundation of School of Science(HJGSK2014G121)
文摘In an active radar-tracking system,the target-motion model is usually modeled in the Cartesian coordinates,while the radar measurement usually is obtained in polar/spherical coordinates.Therefore the target-tracking problem in the Cartesian coordinates becomes a nonlinear state estimation problem.A number of measurement-conversion techniques,which are based on position measurements,are widely used such that the Kalman filter can be used in the Cartesian coordinates.However,they have fundamental limitations to result in filtering performance degradation.In fact,in addition to position measurements,the Doppler measurement or range rate,containing information of target velocity,has the potential capability to improve the tracking performance.A filter is proposed that can use converted Doppler measurements(i.e.the product of the range measurements and Doppler measurements) in the Cartesian coordinates.The novel filter is theoretically optimal in the rule of the best linear unbiased estimation among all linear unbiased filters in the Cartesian coordinates,and is free of the fundamental limitations of the measurement-conversion approach.Based on simulation experiments,an approximate,recursive implementation of the novel filter is compared with those obtained by four state-of-the-art conversion techniques recently.Simulation results demonstrate the effectiveness of the proposed filter.
基金supported by the National Natural Science Foundation of China under Grant 62003247, Grant 62075169, and Grant 62061160370。
文摘Infrared(IR) small target detection is one of the key technologies of infrared search and track(IRST)systems. Existing methods have some limitations in detection performance, especially when the target size is irregular or the background is complex. In this paper, we propose a pixel-level local contrast measure(PLLCM), which can subdivide small targets and backgrounds at pixel level simultaneously.With pixel-level segmentation, the difference between the target and the background becomes more obvious, which helps to improve the detection performance. First, we design a multiscale sliding window to quickly extract candidate target pixels. Then, a local window based on random walker(RW) is designed for pixel-level target segmentation. After that, PLLCM incorporating probability weights and scale constraints is proposed to accurately measure local contrast and suppress various types of background interference. Finally, an adaptive threshold operation is applied to separate the target from the PLLCM enhanced map. Experimental results show that the proposed method has a higher detection rate and a lower false alarm rate than the baseline algorithms, while achieving a high speed.
基金This work was supported by the National Natural Science Foundation of China(61671181,62101162).
文摘In some tracking applications,due to the sensor characteristic,only range measurements are available.If this is the case,due to the lack of full position measurements,the observability of Cartesian states(e.g.,position and velocity)are limited to particular cases.For general cases,the range measurements can be utilized by developing a state estimation algorithm in range-Doppler(R-D)plane to obtain accurate range and Doppler estimates.In this paper,a state estimation method based on the proper dynamic model in the R-D plane is proposed.The unscented Kalman filter is employed to handle the strong nonlinearity in the dynamic model.Two filtering initialization methods are derived to extract the initial state estimate and the initial covariance in the R-D plane from the first several range measurements.One is derived based on the well-known two-point differencing method.The other incorporates the correct dynamic model information and uses the unscented transformation method to obtain the initial state estimates and covariance,resulting in a model-based method,which capitalizes the model information to yield better performance.Monte Carlo simulation results are provided to illustrate the effectiveness and superior performance of the proposed state estimation and filter initialization methods.
基金supported by the National Natural Science Foundation of China(No.52074123)the Natural Science Foundation of Hebei Province(Nos.E2022209143,E2021209148 and E2021209052).
文摘Users of the digital image correlation method are faced with the problem of poor operability,low repeatability,and lack of standardized specifications for spraying speckles.To solve the problem,the research proposed a rock deformation measurement method that obviates the need to spray speckles.A local binary model was established by using the local binary pattern(LBP)operator based on deep texture features on rock surfaces.The resulting LBP digital speckle pattern can substitute artificial speckle patterns and demonstrates high quality and strong applicability.Based on the LBP digital speckle pattern,the target tracking algorithm was employed to achieve non-contact measurement of the dynamic displacements of rocks.The feasibility and effectiveness of the algorithm in practical application were verified by conducting shear tests on granite and siltstone.Test results show that the deformation characteristics in the displacement nephograms are in line with the measured data pertaining to rock fracturing and conform to the basic characteristics of the shear failure of rocks.The deformation measurement method based on surface texture information can realize non-contact displacement measurement of rocks under conditions without speckles:this obviates the influence of the quality of sprayed speckles on the accuracy of the measurement of deformation.