期刊文献+
共找到4,272篇文章
< 1 2 214 >
每页显示 20 50 100
Application of near-infrared spectroscopy for fast germplasm analysis and classification in multi-environment using intact-seed peanut(Arachis hypogaea L.)
1
作者 Fentanesh Chekole Kassie Gilles Chaix +10 位作者 Hermine Bille Ngalle Maguette Seye Coura Fall Hodo-Abalo Tossim Aissatou Sambou Olivier Gibert Fabrice Davrieux Joseph Martin Bell Jean-Francois Rami Daniel Fonceka Joel Romaric Nguepjop 《Oil Crop Science》 CSCD 2024年第2期132-141,共10页
Peanut is a worldwide oilseed crop and the need to assess germplasm in a non-destructive manner is important for seed nutritional breeding.In this study,Near Infrared Spectroscopy(NIRS)was applied to rapidly assess ge... Peanut is a worldwide oilseed crop and the need to assess germplasm in a non-destructive manner is important for seed nutritional breeding.In this study,Near Infrared Spectroscopy(NIRS)was applied to rapidly assess germplasm variability from whole seed of 699 samples,field-collected and assembled in four genetic and environmentbased sets:one set of 300 varieties of a core-collection and three sets of 133 genotypes of an interspecific population,evaluated in three environments in a large spatial scale of two countries,Mbalmayo and Bafia in Cameroon and Nioro in Senegal,under rainfed conditions.NIR elemental spectra were gathered on six subsets of seeds of each sample,after three rotation scans,with a spectral resolution of 16 cm-1over the spectral range of867 nm to 2530 nm.Spectra were then processed by principal component analysis(PCA)coupled with Partial least squares-discriminant analysis(PLS-DA).As results,a huge variability was found between varieties and genotypes for all NIR wavelength within and between environments.The magnitude of genetic variation was particularly observed at 11 relevant wavelengths such as 1723 nm,usually related to oil content and fatty acid composition.PCA yielded the most chemical attributes in three significant PCs(i.e.,eigenvalues>10),which together captured 93%of the total variation,revealing genetic and environment structure of varieties and genotypes into four clusters,corresponding to the four samples sets.The pattern of genetic variability of the interspecific population covers,remarkably half of spectrum of the core-collection,turning out to be the largest.Interestingly,a PLS-DA model was developed and a strong accuracy of 99.6%was achieved for the four sets,aiming to classify each seed sample according to environment origin.The confusion matrix achieved for the two sets of Bafia and Nioro showed 100%of instances classified correctly with 100%at both sensitivity and specificity,confirming that their seed quality was different from each other and all other samples.Overall,NIRS chemometrics is useful to assess and distinguish seeds from different environments and highlights the value of the interspecific population and core-collection,as a source of nutritional diversity,to support the breeding efforts. 展开更多
关键词 GROUNDNUT OILSEED Near infrared spectroscopy Germplasm analysis ENVIRONMENT NUTRITIONAL Breeding
下载PDF
Carbonization mechanism of bamboo (phyllostachys) by means of Fourier Transform Infrared and elemental analysis 被引量:13
2
作者 左宋林 高尚愚 +1 位作者 阮锡根 徐柏森 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第1期75-79,共5页
通过测定在200-600℃炭化竹材得到的固体产物的碳、氢、氧元素的含量及它们的红外光谱,研究了在炭化过程中竹材中半纤维素、纤维素及木素的变化规律。结果表明,结合元素分析,红外光谱分析方法是研究竹材炭化机理的有效手段。在200℃以前... 通过测定在200-600℃炭化竹材得到的固体产物的碳、氢、氧元素的含量及它们的红外光谱,研究了在炭化过程中竹材中半纤维素、纤维素及木素的变化规律。结果表明,结合元素分析,红外光谱分析方法是研究竹材炭化机理的有效手段。在200℃以前,竹材中的半纤维素和纤维素的大量羟基断裂,并结合成水而失去。在200-250℃之间,竹材中的纤维素被降解,其中的吡喃型环也遭到破坏。并且木素中的甲氧基也被脱去。竹材中的木素网状结构在250-400℃之间遭到完全的破坏。竹炭中的碳原子在600℃已基本上完成了芳环化。图3表2参15。 展开更多
关键词 BAMBOO CARBONIZATION Fourier Transform infrared Elemental analysis
下载PDF
Automated Registration for Infrared Image Based on Wavelet Analysis 被引量:5
3
作者 钮永胜 倪国强 《Journal of Beijing Institute of Technology》 EI CAS 2000年第1期66-72,共7页
To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation f... To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation for input image with angle difference between them. A hi erarchical feature matching algorithm was adopted to get the final transform parameters between the two images. The simulation results for two infrared images show that the method can effectively, quickly and accurately register images and be antinoise to some extent. 展开更多
关键词 image registration image fusion wavelet analysis infrared image processing
下载PDF
Morphological Classification of Infrared Galaxies Based on WISE
4
作者 Zhi-Ren Pan Bo Qiu +3 位作者 Cui-Xiang Liu A-Li Luo Xia Jiang Xiao-Yu Guo 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第4期222-236,共15页
This study introduces a novel convolutional neural network,the WISE Galaxy Classification Network(WGC),for classifying spiral and elliptical galaxies using Wide-field Infrared Survey Explorer(WISE)images.WGC attains a... This study introduces a novel convolutional neural network,the WISE Galaxy Classification Network(WGC),for classifying spiral and elliptical galaxies using Wide-field Infrared Survey Explorer(WISE)images.WGC attains an accuracy of 89.03%,surpassing the combined use of K-means or SVM with the Color-Color method in more accurately identifying galaxy morphologies.The enhanced variant,WGC_mag,integrates magnitude parameters with image features,further boosting the accuracy to 89.89%.The research also delves into the criteria for galaxy classification,discovering that WGC primarily categorizes dust-rich images as elliptical galaxies,corresponding to their lower star formation rates,and classifies less dusty images as spiral galaxies.The paper explores the consistency and complementarity of WISE infrared images with SDSS optical images in galaxy morphology classification.The SDSS Galaxy Classification Network(SGC),trained on SDSS images,achieved an accuracy of 94.64%.The accuracy reached 99.30% when predictions from SGC and WGC were consistent.Leveraging the complementarity of features in WISE and SDSS images,a novel variant of a classifier,namely the Multi-band Galaxy Morphology Integrated Classifier,has been developed.This classifier elevates the overall prediction accuracy to 95.39%.Lastly,the versatility of WGC was validated in other data sets.On the HyperLEDA data set,the distinction between elliptical galaxies and Sc,Scd and Sd spiral galaxies was most pronounced,achieving an accuracy of 90%,surpassing the classification results of the Galaxy Zoo 2 labeled WISE data set.This research not only demonstrates the effectiveness of WISE images in galaxy morphology classification but also represents an attempt to integrate multi-band astronomical data to enhance understanding of galaxy structures and evolution. 展开更多
关键词 methods:data analysis infrared:galaxies galaxies:spiral galaxies:elliptical and lenticular CD
下载PDF
Cross-interference correction and simultaneous multi-gas analysis based on infrared absorption 被引量:3
5
作者 孙友文 曾议 +5 位作者 刘文清 谢品华 陈嘉乐 李先欣 汪世美 黄书华 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期168-175,共8页
In this paper, we present simultaneous multiple pollutant gases (CO2, CO, and NO) measurements by using the non-dispersive infrared (NDIR) technique. A cross-correlation correction method is proposed and used to c... In this paper, we present simultaneous multiple pollutant gases (CO2, CO, and NO) measurements by using the non-dispersive infrared (NDIR) technique. A cross-correlation correction method is proposed and used to correct the cross-interferences among the target gases. The calculation of calibration curves is based on least-square fittings with third-order polynomials, and the interference functions are approximated by linear curves. The pure absorbance of each gas is obtained by solving three simultaneous equations using the fitted interference functions. Through the interference correction, the signal created at each filter channel only depends on the absorption of the intended gas. Gas mixture samples with different concentrations of CO2, CO, and NO are pumped into the sample cell for analysis. The results show that the measurement error of each gas is less than 4.5%. 展开更多
关键词 environmental pollution measurements optical measurement technology non-dispersive infrared technique gas analysis
下载PDF
Discrimination of Transgenic Rice Based on Near Infrared Reflectance Spectroscopy and Partial Least Squares Regression Discriminant Analysis 被引量:7
6
作者 ZHANG Long WANG Shan-shan +2 位作者 DING Yan-fei PAN Jia-rong ZHU Cheng 《Rice science》 SCIE CSCD 2015年第5期245-249,共5页
Near infrared reflectance spectroscopy (NIRS), a non-destructive measurement technique, was combined with partial least squares regression discrimiant analysis (PLS-DA) to discriminate the transgenic (TCTP and mi... Near infrared reflectance spectroscopy (NIRS), a non-destructive measurement technique, was combined with partial least squares regression discrimiant analysis (PLS-DA) to discriminate the transgenic (TCTP and mi166) and wild type (Zhonghua 11) rice. Furthermore, rice lines transformed with protein gene (OsTCTP) and regulation gene (Osmi166) were also discriminated by the NIRS method. The performances of PLS-DA in spectral ranges of 4 000-8 000 cm-1 and 4 000-10 000 cm-1 were compared to obtain the optimal spectral range. As a result, the transgenic and wild type rice were distinguished from each other in the range of 4 000-10 000 cm-1, and the correct classification rate was 100.0% in the validation test. The transgenic rice TCTP and mi166 were also distinguished from each other in the range of 4 000-10 000 cm-1, and the correct classification rate was also 100.0%. In conclusion, NIRS combined with PLS-DA can be used for the discrimination of transgenic rice. 展开更多
关键词 near infrared reflectance spectroscopy genetically-modified food regulation gene protein gene partial least squares regression discrimiant analysis
下载PDF
Mathematic Models for Analysis of Quality Components in Sugarcane Juice with Fourier Transform Near Infrared Spectroscopy 被引量:4
7
作者 CAOGan TANZhong-wen 《Agricultural Sciences in China》 CAS CSCD 2003年第2期190-194,共5页
With the technique of Fourier transform near infrared (FT-NIR) spectroscopy, the calibration models for quantitative analysis of sucrose and polarization in sugarcane juice were developed by using transmission mode an... With the technique of Fourier transform near infrared (FT-NIR) spectroscopy, the calibration models for quantitative analysis of sucrose and polarization in sugarcane juice were developed by using transmission mode and calibrating with partial least square (PLS) algorithm. The determination coefficients (R2) of the predicted models for sucrose and polarization in juice were 0. 9980 and 0. 9979 respectively; the root mean square errors of cross validation (RMSECV) were 0. 143 and 0. 155% for sucrose and polarization in juice respectively. The predictive errors measured by FT-NIR were close to those by routine laboratory methods. The results demonstrated that the FT-NIR methods had high accuracy and they were able to replace the routine laboratory analysis. It was also demonstrated that as a rapid and accurate measurement, the FT-NIR technique had potential applications in quality control of mill sugarcane, establishment of payment system based on sugarcane quality, and selection of clones in sugarcane breeding. 展开更多
关键词 Fourier transform near infrared spectroscopy Quantitative analysis SUGARCANE SUCROSE
下载PDF
Visible and Near-Infrared Spectroscopic Discriminant Analysis Applied to Brand Identification of Wine 被引量:2
8
作者 Sixia Liao Jiemei Chen Tao Pan 《American Journal of Analytical Chemistry》 2020年第2期104-113,共10页
High-end wine brand is made through the use of high-quality grape variety and yeast strain, and through a unique process. Not only is it rich in nutrients, but also it has a unique taste and a fragrant scent. Brand id... High-end wine brand is made through the use of high-quality grape variety and yeast strain, and through a unique process. Not only is it rich in nutrients, but also it has a unique taste and a fragrant scent. Brand identification of wine is difficult and complex because of high similarity. In this paper, visible and near-infrared (NIR) spectroscopy combined with partial least squares discriminant analysis (PLS-DA) was used to explore the feasibility of wine brand identification. Chilean Aoyo wine (2016 vintage) was selected as the identification brand (negative, 100 samples), and various other brands of wine were used as interference brands (positive, 373 samples). Samples of each type were randomly divided into the calibration, prediction and validation sets. For comparison, the PLS-DA models were established in three independent and two complex wavebands of visible (400 - 780 nm), short-NIR (780 - 1100 nm), long-NIR (1100 - 2498 nm), whole NIR (780 - 2498 nm) and whole scanning (400 - 2498 nm). In independent validation, the five models all achieved good discriminant effects. Among them, the visible region model achieved the best effect. The recognition-accuracy rates in validation of negative, positive and total samples achieved 100%, 95.6% and 97.5%, respectively. The results indicated the feasibility of wine brand identification with Vis-NIR spectroscopy. 展开更多
关键词 WINE BRAND IDENTIFICATION Visible-Near infrared Spectroscopy Partial Least SQUARES DISCRIMINANT analysis Waveband Selection
下载PDF
Wavelet-based classification and influence matrix analysis method for the fast discrimination of Chinese herbal medicines according to the geographical origins with near infrared spectroscopy 被引量:1
9
作者 Wenlong Li Haibin Qu 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2014年第4期21-31,共11页
A discriminant analysis technique using wavelet transformation(WT)and influence matrixanalysis(CAIMAN)method is proposed for the near infrared(NIR)spectroscopy classifi-cation.In the proposed methodology,NIR spectra a... A discriminant analysis technique using wavelet transformation(WT)and influence matrixanalysis(CAIMAN)method is proposed for the near infrared(NIR)spectroscopy classifi-cation.In the proposed methodology,NIR spectra are decomposed by WT for data com-pression and a forward feature selection is further employed to extract the relevant informationfrom the wavelet coefficients,reducing both classification errors and model complexity.Adiscriminant-CAIMAN(D-CAIMAN)method is utilized to build the classification model inwavelet domain on the basis of reduced wavelet coefficients of spectral variables.NIR spectradata set of 265 salviae miltiorrhizae radia samples from 9 different geographical origins is usedas an example to test the classification performance of the algorithm.For a comparison,k-nearest neighbor(KNN),linear discriminant analysis(LDA)and quadratic discriminant analysis(QDA)methods are also employed.D-CAIMAN with wavelet-based feature selection(WD-CAIMAN)method shows the best performance,achieving the total classification rate of ioo%in both cross-validation set and prediction set.It is worth noting that the WD-CAIMANclassifier also shows improved sensitivity,selectivity and model interpretability in thecla.ssifications. 展开更多
关键词 Discriminant analysis near infrared spectroscopy Chinese herbal medicines variable selection wavelet analysis
下载PDF
Equidistant combination wavelength screening and step-by-step phase-out method for the near-infrared spectroscopic analysis of serum urea nitrogen 被引量:2
10
作者 Yihui Yang Fenfen Lei +3 位作者 Jing Zhang Lijun Yao Jiemei Chen Tao Pan 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2019年第6期85-96,共12页
We applied near-infrared(NIR)spectroscopy with chemometrics for the rapid and reagent-fee analysis of serum urea nitrogen(SUN).The modeling is based on the average effect of multiple sample partitions to achieve param... We applied near-infrared(NIR)spectroscopy with chemometrics for the rapid and reagent-fee analysis of serum urea nitrogen(SUN).The modeling is based on the average effect of multiple sample partitions to achieve parameter selection with stability.A multiparameter optimization platform with Norris derivative filter-partial least squares(Norris-PLS)was developed to select the most suitable mode(d=2,s=33,g=15).Using equidistant combination PLS(EC-PLS)with four parameters(initial wavelength I,number of wavelengths N,number of wavelength gaps G and latent variables LV),we performed wavelength screening after eliminating high-absorption wavebands.The optimal EC-PLS parameters were I=1228 nm,N=26,G=16 and LV=12.The root-mean square error(SEP),correlation coefficient(R_(p))for prediction and ratio of performance-to-deviation(RPD)for validation were 1.03 mmol L^(-1),0.992 and 7.6,respectively.We proposed the wavelength step-by-step phase-out PLS(WSP-PLS)to remove redun-dant wavelengths in the top 100 EC-PLS models with improved prediction performance.The combination of 19 wavelengths was identifed as the optimal model for SUN.The SEP,Rp and RPD in validation were 1.01 mmol L^(-1),0.992 and 7.7,respectively.The prediction effect and wavelength complexity were better than those of EC-PIS.Our results showed that NIR spectroscopy combined with the EC-PLS and WSP-PLS methods enabled the high-precision analysis ofSUN.WSP-PLS is a secondary optimization method that can further optimize any wavelength moc odel obtained through other continuous or discrete strategies to establish a simple and better model. 展开更多
关键词 Serum urea nitrogen near infrared spectroscopic analysis Norris derivative filter equidistant combination wavelength screening wavelength step-by-step phase-out
下载PDF
Moving-window bis-correlation coefficients method for visible and near-infrared spectral discriminant analysis with applications 被引量:1
11
作者 Lijun Yao Weiqun Xu +1 位作者 Tao Pan Jiemei Chen 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2018年第2期65-77,共13页
The moving window bis corelation coefficients(MW BiCC)was proposed and employed for the discriminant analysis of transgenic sugarcane leaves and B-thalassemia with visible and near-infrared(Vis NIR)spectroscopy.The we... The moving window bis corelation coefficients(MW BiCC)was proposed and employed for the discriminant analysis of transgenic sugarcane leaves and B-thalassemia with visible and near-infrared(Vis NIR)spectroscopy.The well-performed moving window principal component analysis linear discriminant analysis(MWPCA-LDA)was also conducted for comparison.A total of 306 transgenic(positive)and 150 nont ransgenic(negative)leave samples of sugarcane were collected and divided to calibration,prediction,and validation.The diffuse reflection spectra were corected using Savitzky-Golay(SG)smoothing with first-order derivative(d=1),third-degree polynomial(p=3)and 25 smpothing points(m=25).The selected waveband was 736-1054nm with MW-BiCC,and the positive and negative validation recognition rates(V_REC^(+),VREC^(-))were 100%,98.0%,which achieved the same effect as MWPCA-LDA.Another example,the 93 B-thalassemia(positive)and 148 nonthalassemia(negative)of human hemolytic samples were colloctod.The transmission spectra were corrected using SG smoothing withd=1,p=3 and m=53.Using M W-BiCC,many best wavebands were selected(e.g.,1116-1146,17941848 and 22842342nm).The V_REC^(+)and V_REC^(-)were both 100%,which achieved the same effect as MW-PCA-LDA.Importantly,the BICC only required ca lculating correlation cofficients between the spectrum of prediction sample and the average spectra of two types of calibration samples.Thus,BiCC was very simple in algorithm,and expected to obtain more applications.The results first confirmed the feasibility of distinguishing B-thalassemia and normal control samples by NIR spectroscopy,and provided a promising simple tool for large population thalassemia screening. 展开更多
关键词 Visible and near infrared spectroscopic discriminant analysis transgenic sugarcane leaves B-thalassemia moving-window bis-correlation cofficients moving-window principal component analysis linear discriminant analysis.
下载PDF
Influence of signal-to-noise ratio on accuracy of spectral analysis by near infrared spectroscopy 被引量:1
12
作者 ZHUANG Xin-gang SHI Xue-shun +3 位作者 LIU Hong-bo LIU Chang-ming ZHANG Peng-ju WANG Heng-fei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第3期211-216,共6页
As one of the important indicators of spectrometer,signal-to-noise ratio(SNR)reflects the ability of spectrometer to detect weak signals.To investigate the influence of SNR on the prediction accuracy of spectral analy... As one of the important indicators of spectrometer,signal-to-noise ratio(SNR)reflects the ability of spectrometer to detect weak signals.To investigate the influence of SNR on the prediction accuracy of spectral analysis,we first introduce the major factors affecting the spectral SNR.Taking green tea as an example,the influence of spectral SNR on the prediction accuracy of the origin identification model is analyzed by experiments.At the same time,the relationship between the spectral SNR and prediction accuracy of spectral analysis model is fitted.Based on this,the common methods for improving the spectral SNR are discussed.The results show that the accuracy of the prediction set model first decreases slowly,then decreases linearly,and finally tends to be flat as the spectral SNR decreases.Through calculation,in order to achieve the prediction accuracy of prediction model reaching 90%and 85%,the spectral SNR is required to be higher than 23.42 dB and 21.16 dB,respectively.The overall results provide certain parameters support for the development of new online analytical spectroscopic instruments,especially for the technical indicators of SNR. 展开更多
关键词 near infrared spectroscopy signal-to-noise ratio(SNR) partial least squares(PLS) spectral analysis green tea
下载PDF
Near-Infrared Spectroscopy Combined with Partial Least Squares Discriminant Analysis Applied to Identification of Liquor Brands 被引量:4
13
作者 Bin Yang Lijun Yao Tao Pan 《Engineering(科研)》 2017年第2期181-189,共9页
The identification of liquor brands is very important for food safety. Most of the fake liquors are usually made into the products with the same flavor and alcohol content as regular brand, so the identification for t... The identification of liquor brands is very important for food safety. Most of the fake liquors are usually made into the products with the same flavor and alcohol content as regular brand, so the identification for the liquor brands with the same flavor and the same alcohol content is essential. However, it is also difficult because the components of such liquor samples are very similar. Near-infrared (NIR) spectroscopy combined with partial least squares discriminant analysis (PLS-DA) was applied to identification of liquor brands with the same flavor and alcohol content. A total of 160 samples of Luzhou Laojiao liquor and 200 samples of non-Luzhou Laojiao liquor with the same flavor and alcohol content were used for identification. Samples of each type were randomly divided into the modeling and validation sets. The modeling samples were further divided into calibration and prediction sets using the Kennard-Stone algorithm to achieve uniformity and representativeness. In the modeling and validation processes based on PLS-DA method, the recognition rates of samples achieved 99.1% and 98.7%, respectively. The results show high prediction performance for the identification of liquor brands, and were obviously better than those obtained from the principal component linear discriminant analysis method. NIR spectroscopy combined with the PLS-DA method provides a quick and effective means of the discriminant analysis of liquor brands, and is also a promising tool for large-scale inspection of liquor food safety. 展开更多
关键词 IDENTIFICATION of LIQUOR Brands NEAR-infrared Spectroscopy Partial Least SQUARES DISCRIMINANT analysis Principal Component Linear DISCRIMINANT analysis
下载PDF
Heat Source Analysis of Hard Disk Drives with Different Wall Conditions using Infrared System
14
作者 Eddie Yin-Kwee Ng Wan Kee Ng Shaoyong Liu 《Engineering(科研)》 2011年第1期22-31,共10页
Increasing performance parameters of hard disk drive (HDD) such as higher capacity and faster data access speed with decreasing physical size make HDD more susceptible to thermal effects. Contact temperature measureme... Increasing performance parameters of hard disk drive (HDD) such as higher capacity and faster data access speed with decreasing physical size make HDD more susceptible to thermal effects. Contact temperature measurement using thermocouple is not suitable for the rotating platter of HDD. Heat analysis using simulation software requires accurate initial parameter setting such as thermal (initial & boundary) conditions of certain regions. Temperature measurement using infrared (IR) system avoids these limitations;it is non-contact, responsive and does not require initial parameter setting. Thermal pattern distribution can be studied from the thermal images. However, emissivity of the target has to be known and calibration of the system is essential for accurate temperature reading. This paper showed that temperature within the HDD increases with ambient temperature and time, but the thermal distribution pattern in the HDD was not affected by different ambient temperatures. Three wall boundary conditions were conducted to study the thermal distribution pattern in the HDD. A solution was then proposed based on the results obtained from the experiments to improve the heat transfer rate and steady state temperature, and reduce the detrimental effects from high thermal generation in future prototypes. Another important finding was that the averaged temperature of the head cap was generally higher compared to that of the disk, as the spindle motor is the primary heat source within the HDD. Heat source analysis of HDD with IR system allows designers to have better visibility of the temperature generated in different components of the HDD. Proper cooling may enhance disk life as well as ensure the stability and integrity of the system. 展开更多
关键词 HEAT Transfer infrared HARD DISK Drive HEAT Source analysis HEAT SINK CONDITIONS
下载PDF
Classification of Barley according to Harvest Year and Species by Using Mid-infrared Spectroscopy and Multivariate Analysis
15
作者 Ajib Budour Fournier Frantz +2 位作者 Boivin Patrick Schmitt Marc Fick Michel 《Journal of Food Science and Engineering》 2014年第1期36-54,共19页
In order to monitor malt quality in the malting industry, despite yearly variations in the barley quality, 394 barley samples were analysed using conventional (moisture, protein and B-glucan content) and mid-infrare... In order to monitor malt quality in the malting industry, despite yearly variations in the barley quality, 394 barley samples were analysed using conventional (moisture, protein and B-glucan content) and mid-infrared Fourier transform spectroscopy FT-IR. The experimental dataset included barley from three harvest years, two barley species, 77 barley varieties, and two-row and six-row barley, from 16 cultivation sites. For each sample, the malt quality indices were also assessed according to European Brewing Convention (EBC) standards. Principal component analysis (PCA) was carried out on mean-centred, normalized and derivative spectra using 200/cm width spectral bands. The most informative spectral bands were observed in the 800-1,000/cm and 1,000-1,200/cm ranges. PCA revealed that barley harvested in 2010 and in 2011 had bands that were very close together, while 2009 harvest clearly displayed a difference in its quality. PCA made it possible to distinguish two species and confirmed that two-row winter barley quality was closer to two-row spring barley quality than to six-row winter barley. Results indicate that mid-infrared spectrometry (MIR) could be a very useful and rapid analytical tool to assess barley qualitative quality. 展开更多
关键词 Malting barley mean infrared spectroscopy principal components analysis.
下载PDF
Visible and Near-Infrared Spectroscopy with Multi-Parameters Optimization of Savitzky-Golay Smoothing Applied to Rapid Analysis of Soil Cr Content of Pearl River Delta 被引量:3
16
作者 Xiaowen Shi Lijun Yao Tao Pan 《Journal of Geoscience and Environment Protection》 2021年第3期75-83,共9页
Using visible and near-infrared (Vis-NIR) spectroscopy combined with partial least squares (PLS) regression, the rapid reagent-free analysis model for chromium (Cr) content in tideland reclamation soil in the Pearl Ri... Using visible and near-infrared (Vis-NIR) spectroscopy combined with partial least squares (PLS) regression, the rapid reagent-free analysis model for chromium (Cr) content in tideland reclamation soil in the Pearl River Delta, China was established. Based on Savitzky-Golay (SG) smoothing and PLS regression, a multi-parameters optimization platform (SG-PLS) covering 264 modes was constructed to select the appropriately spectral preprocessing mode. The optimal SG-PLS model was determined according to the prediction effect. The selected optimal parameters <em>d, p, m</em> and LV were 2, 6, 23 and 8, respectively. Using the validation samples that were not involved in modeling, the root mean square error (SEP<sub>V</sub>), relative root mean square error (R-SEP<sub>V</sub>) and correlation coefficients (R<sub>P, V</sub>) of prediction were 11.66 mg<span style="white-space:nowrap;">&middot;</span>kg<sup>-1</sup>, 10.7% and 0.722, respectively. The results indicated that the feasibility of using Vis-NIR spectroscopy combined with SG-PLS method to analyze soil Cr content. The constructed multi-parameters optimization platform with SG-PLS is expected to be applied to a wider field of analysis. The rapid detection method has important application values to large-scale agricultural production. 展开更多
关键词 Soil Heavy Metal CHROMIUM Visible and Near-infrared Spectroscopy Rapid Reagent-Free analysis Savitzky-Golay Smoothing
下载PDF
Global Optimization of Norris Derivative Filtering with Application for Near-Infrared Analysis of Serum Urea Nitrogen 被引量:2
17
作者 Yihui Yang Tao Pan Jing Zhang 《American Journal of Analytical Chemistry》 2019年第5期143-152,共10页
Near-infrared (NIR) spectroscopy combined with chemometrics methods was applied to the rapid and reagent-free analysis of serum urea nitrogen (SUN). The mul-partitions modeling was performed to achieve parameter stabi... Near-infrared (NIR) spectroscopy combined with chemometrics methods was applied to the rapid and reagent-free analysis of serum urea nitrogen (SUN). The mul-partitions modeling was performed to achieve parameter stability. A large-scale parameter cyclic and global optimization platform for Norris derivative filter (NDF) of three parameters (the derivative order: d, the number of smoothing points: s and the number of differential gaps: g) was developed with PLS regression. Meantime, the parameters’ adaptive analysis of NDF algorithm was also given, and achieved a significantly better modeling effect than one without spectral pre-processing. After eliminating the interference wavebands of saturated absorption, the modeling performance was further improved. In validation, the root mean square error (SEP), correlation coefficient (RP) for prediction and the ratio of performance to deviation (RPD) were 1.66 mmol?L-1, 0.966 and 4.7, respectively. The results showed that the high-precision analysis of SUN was feasibility based on NIR spectroscopy and Norris-PLS. The global optimization method of NDF is also expected to be applied to other analysis objects. 展开更多
关键词 NEAR-infrared Spectral analysis SERUM UREA Nitrogen Norris DERIVATIVE Filter Norris-Partial Least SQUARES Global Optimization
下载PDF
Discriminant Analysis of Liquor Brands Based on Moving-Window Waveband Screening Using Near-Infrared Spectroscopy 被引量:3
18
作者 Jie Zhong Jiemei Chen +1 位作者 Lijun Yao Tao Pan 《American Journal of Analytical Chemistry》 2018年第3期124-133,共10页
Partial least squares discriminant analysis (PLS-DA) with integrated moving-window (MW) waveband screening was applied to the discriminant analysis of liquor brands with near-infrared (NIR) spectroscopy. Luzhou Laojia... Partial least squares discriminant analysis (PLS-DA) with integrated moving-window (MW) waveband screening was applied to the discriminant analysis of liquor brands with near-infrared (NIR) spectroscopy. Luzhou Laojiao, a popular liquor with strong fragrant flavor, was used as the identified liquor brand (160 samples, negative, 52 vol alcoholicity). Liquors of 10 other brands with strong fragrant flavor were used as the interferential brands (200 samples, positive, 52 vol alcoholicity). The Kennard-Stone algorithm was used for the division of modeling samples to achieve uniformity and representativeness. Based on the MW-PLS-DA, a simplified optimal model set with 157 wavebands was further proposed. This set contained five types of wavebands corresponding to the NIR absorption bands of water, ethanol, and other micronutrients (i.e., acids, aldehydes, phenols, and aromatic compounds) in liquor for practical choice. Using five selected simple models with 4775 - 4239, 7804 - 6569, 6264 - 5844, 9435 - 7896, and 12066 - 10373 cm-1, the validation recognition rates were obtained as 99.3% or higher. Results show good prediction performance and low model complexity, and also provided a valuable reference for designing small dedicated instruments. The proposed method is a promising tool for large-scale inspection of liquor food safety. 展开更多
关键词 LIQUOR Brands NEAR-infrared Spectroscopy PARTIAL Least SQUARES DISCRIMINANT analysis Moving-Window Waveband SCREENING Simplified Optimal Model Set
下载PDF
Near-Infrared Spectroscopy Combined with Absorbance Upper Optimization Partial Least Squares Applied to Rapid Analysis of Polysaccharide for Proprietary Chinese Medicine Oral Solution 被引量:2
19
作者 Jiexiong Su Xinkai Gao +5 位作者 Lirong Tan Xianzhao Liu Yueqing Ye Yifang Chen Kaisheng Ma Tao Pan 《American Journal of Analytical Chemistry》 2016年第3期275-281,共7页
Near-infrared (NIR) spectroscopy was applied to reagent-free quantitative analysis of polysaccharide of a brand product of proprietary Chinese medicine (PCM) oral solution samples. A novel method, called absorbance up... Near-infrared (NIR) spectroscopy was applied to reagent-free quantitative analysis of polysaccharide of a brand product of proprietary Chinese medicine (PCM) oral solution samples. A novel method, called absorbance upper optimization partial least squares (AUO-PLS), was proposed and successfully applied to the wavelength selection. Based on varied partitioning of the calibration and prediction sample sets, the parameter optimization was performed to achieve stability. On the basis of the AUO-PLS method, the selected upper bound of appropriate absorbance was 1.53 and the corresponding wavebands combination was 400 - 1880 & 2088 - 2346 nm. With the use of random validation samples excluded from the modeling process, the root-mean-square error and correlation coefficient of prediction for polysaccharide were 27.09 mg·L<sup>-</sup><sup>1</sup> and 0.888, respectively. The results indicate that the NIR prediction values are close to those of the measured values. NIR spectroscopy combined with AUO-PLS method provided a promising tool for quantification of the polysaccharide for PCM oral solution and this technique is rapid and simple when compared with conventional methods. 展开更多
关键词 Near-infrared Spectroscopic analysis Proprietary Chinese Medicine Oral Solution POLYSACCHARIDE Absorbance Upper Optimization Partial Least Squares
下载PDF
Visible and Near-Infrared Spectroscopic Discriminant Analysis Applied to Identification of Soy Sauce Adulteration 被引量:1
20
作者 Chunli Fu Jiemei Chen +1 位作者 Lifang Fang Tao Pan 《American Journal of Analytical Chemistry》 2022年第2期51-62,共12页
The identification of soy sauce adulteration can avoid fraud, and protect the rights and interests of producers and consumers. Based on two measurement models (1 mm, 10 mm), the visible and near-infrared (Vis-NIR) spe... The identification of soy sauce adulteration can avoid fraud, and protect the rights and interests of producers and consumers. Based on two measurement models (1 mm, 10 mm), the visible and near-infrared (Vis-NIR) spectroscopy combined with standard normal variate-partial least squares-discriminant analysis (SNV-PLS-DA) was used to establish the discriminant analysis models for adulterated and brewed soy sauces. Chubang soy sauce was selected as an identification brand (negative, 70). The adulteration samples (positive, 72) were prepared by mixing Chubang soy sauce and blended soy sauce with different adulteration rates. Among them, the “blended soy sauce” sample was concocted of salt water (NaCl), monosodium glutamate (C<sub>5</sub>H<sub>10</sub>NNaO<sub>5</sub>) and caramel color (C<sub>6</sub>H<sub>8</sub>O<sub>3</sub>). The rigorous calibration-prediction-validation sample design was adopted. For the case of 1 mm, five waveband models (visible, short-NIR, long-NIR, whole NIR and whole scanning regions) were established respectively;in the case of 10 mm, three waveband models (visible, short-NIR and visible-short-NIR regions) for unsaturated absorption were also established respectively. In independent validation, the models of all wavebands in the cases of 1 mm and 10 mm have achieved good discrimination effects. For the case of 1 mm, the visible model achieved the optimal validation effect, the validation recognition-accuracy rate (RAR<sub>V</sub>) was 99.6%;while in the case of 10 mm, both the visible and visible-short-NIR models achieved the optimal validation effect (RAR<sub>V</sub> = 100%). The detection method does not require reagents and is fast and simple, which is easy to promote the application. The results can provide valuable reference for designing small dedicated spectrometers with different measurement modals and different spectral regions. 展开更多
关键词 Visible and Near-infrared Spectroscopy Soy Sauce Adulteration Identification Partial Least Squares-Discriminant analysis Standard Normal Variate
下载PDF
上一页 1 2 214 下一页 到第
使用帮助 返回顶部