Catalysis and regeneration efficiency of granular activated carbon (GAC) and activated carbon fiber (ACF) were investigated in a non-equilibrium plasma water treatment reactor with a combination of pulsed streamer...Catalysis and regeneration efficiency of granular activated carbon (GAC) and activated carbon fiber (ACF) were investigated in a non-equilibrium plasma water treatment reactor with a combination of pulsed streamer discharge and GAC or ACF. The experimental results show that the degradation efficiency of methyl orange (MO) by the combined treatment can increase 22% (for GAC) and 24% (for ACF) respectively compared to pulsed discharge treatment alone, indicating that the combined treatment has a synergetic effect. The MO degradation efficiency by the combined treatment with pulsed discharge and saturated GAC or ACF can increase 12% and 17% respectively compared to pulsed discharge treatment alone. Both GAC and ACF show catalysis and the catalysis of ACF is prominent. Meanwhile, the regeneration of GAC and ACF are realized in this process. When H202 is introduced into the system, the utilization efficiency of ozone and ultraviolet light is improved and the regeneration efficiency of GAC and ACF is also increased.展开更多
In the reaction of methane and carbon dioxide to C2 hydrocarbons under non-equilibrium plasma, methane conversion was decreased, but selectivity of C2 hydrocarbons was increased when using La2O3/?Al2O3 as catalyst. S...In the reaction of methane and carbon dioxide to C2 hydrocarbons under non-equilibrium plasma, methane conversion was decreased, but selectivity of C2 hydrocarbons was increased when using La2O3/?Al2O3 as catalyst. So the yield of C2 hydrocarbons was higher than using plasma alone. The synergism of La2O3/?Al2O3 and plasma gave methane conversion of 24.9% and C2 yield of 18.1%. The distribution of C2 hydrocarbons changed when Pd- La2O3/?Al2O3 was used as catalyst, the major C2 product was ethylene.展开更多
A mini-type of plasma source was studied experimentally. The results showed that the plasma density, which was generated by an atmospheric non-equilibrium plasma source, rises with the increase in driving electric-fie...A mini-type of plasma source was studied experimentally. The results showed that the plasma density, which was generated by an atmospheric non-equilibrium plasma source, rises with the increase in driving electric-field and the momentum of gas particles. For a driving electricfield of 56 kV/cm and a gas particles' momentum of 10^9 × 10^-22 g·m/s, the ion density can exceed 10^10/cm^3 while the effective volume of the plasma source is only 2.5 cm^2. This study may help develop a method to generate a minitype plasma source with low energy consumption but high ion concentration. This source can be used in chemical industry, environmental engineering and military applications.展开更多
A few factors effecting the reaction of plasma dehydrocoupling of methane have been investigated. The experiment shows that plasma power load, i.e. the ratio of methane flow to plasma power, is the most important fact...A few factors effecting the reaction of plasma dehydrocoupling of methane have been investigated. The experiment shows that plasma power load, i.e. the ratio of methane flow to plasma power, is the most important factor effecting methane dehydrocoupling. The products of the reaction are mainly acetylene, ethylene, ethane and unreacted methane etc. If oxygen with a suitable molar ratio is introduced into plasma region at a reasonable position, the selectivity of C2 hydrocarbons can be increased greatly.展开更多
In this paper, hydrogen is first utilized in the study on methane coupling under nonequilibrium plasma. Results indicate that the addition of hydrogen is beneficial. to the methane coupling so as to increase the conv...In this paper, hydrogen is first utilized in the study on methane coupling under nonequilibrium plasma. Results indicate that the addition of hydrogen is beneficial. to the methane coupling so as to increase the conversion rate of methane and the yield of C2 hydrocarbon with a gradual increase in the addition of hydrogen in a certain range of proportionality. This conclusion explores a new route of hydrogenated methane coupling.展开更多
Recently, plasma sterilization has attracted increasing attention in dental community ibr the atmospheric pressure non-equilibrium plasma jet (APNPs), which is driven by a kilohertz pulsed DC power, may be applied t...Recently, plasma sterilization has attracted increasing attention in dental community ibr the atmospheric pressure non-equilibrium plasma jet (APNPs), which is driven by a kilohertz pulsed DC power, may be applied to the dental and oral diseases. However, it is still in doubt whether APNPs can effectively kill pathogenic bacteria in the oral cavity and produce no harmful effects on normal oral tissues, especially on normal mucosa. The aim of this study was to evaluate the bacterial-killing effect of APNPs in the biofilms containing a single breed of bacteria (Porphyromonas gingivalis, Pg.), and the pathological changes of the oral mucosa after treatment by APNPs. P.g. was incubated to form the biofilms in vitro, and the samples were divided into three groups randomly: group A (blank control); group B in which the biofilms were treated by APNPs (the setting of the equipment: 10 kHz, 1600 ns and 8 kV); group C in which the biofilms were exposed only to a gas jet without ignition of the plasma. Each group had three samples and each sample was processed for up to 5 min. The biofilms were then fluorescently stained, observed and photographed under a laser scanning confocal microscope. In the animal experiment, six male Japanese white rabbits were divided into two groups randomly (n=3 in each group) in terms of the different post-treatment time (1-day group and 5-day group). The buccal mucosa of the left side and the mucosa of the ventral surface of the tongue were treated by APNPs for 10 min in the same way as the bacterial biofilm experiment in each rabbit, and the corresponding mucosa of the other sides served as normal control. The clinical manifestations of the oral mucosa were observed and recorded every day. The rabbits were sacrificed one or five day(s) after APNPs treatment. The oral mucosa were harvested and prepared to haematoxylin and eosin-stained sections. Clinical observation and histopathological scores were used to assess mucosal changes. The results showed the obvious P.g. biofilms were formed at 10 days, and most of the bacteria in groups A and C were alive under a laser scanning confocal microscope, but the bacteria in the group B were almost all dead. In animal experiment, no ulcers, anabrosis and oral mucositis were found in both the 1-day and 5-day groups. The aver- age mucous membrane irritation index was -0.83 and -0.67 in the 1-day and 5-day groups, respectively, suggesting that no intense mucosal membrane irritation responses occurred. It was concluded that APNPs could effectively kill Pg. in the biofilms and did not cause any pathological changes in the normal mucosa, suggesting that the plasma jet (APNPs) may be applied to oral diseases as a novel sterilization device in the future.展开更多
In this study, the sterilizing effect of atmospheric pressure nonequilibrium plasmas (APNPs) on Neisseria gonorrhoeae (N. gonorrhoeae) was preliminarily examined and the possible mechanisms were explored. N. gonor...In this study, the sterilizing effect of atmospheric pressure nonequilibrium plasmas (APNPs) on Neisseria gonorrhoeae (N. gonorrhoeae) was preliminarily examined and the possible mechanisms were explored. N. gonorrhoeae FA1090, FA19 and MSll were treated by APNPs and their survival rate was analyzed by using CFUs counting and structurally studied by laser scanning confocal microscopy. The morphological changes of bacterial cell membrane and wall were studied under TEM. Our results showed that APNPs had strong sterilizing effect on N. gonorrhoeae. The survival rate of MS11 in N. gonorrhoeae liquid medium was 60.65% after disinfection with the APNPs for 5 rain, whereas, the survival rate of FA19 was 92.60% and the rate of FA1090 was 96.40%. The survival rate of MS 11 was 21.13% after exposure to APNPs for 6 rain, whereas the survival rate of FA19 was 31.60% and the rate of FA1090 was 91.00%. N. gonorrhoeae was structurally damaged after treatment with APNPs. It is concluded that APNPs is able to effectively and quickly kill the N. gonorrhoeae, and the killing effect is related to the architectural damage of cell membrane.展开更多
A temperature-controlled and pressure-controlled coaxial dielectric barrier discharge (DBD) reactor was developed to decouple the thermal and kinetic effects of radio frequency (RF) discharge on methane conversion...A temperature-controlled and pressure-controlled coaxial dielectric barrier discharge (DBD) reactor was developed to decouple the thermal and kinetic effects of radio frequency (RF) discharge on methane conversion, and further to compare the kinetic behaviors of the mechanistically similar reactions of methane conversion with O2 and CO2 additives. A kinetic mechanism for RF plasma assisted methane conversion was assembled. The formation of products in the RF plasma reactor was measured with Gas Chromatography (GC-TCD) and the data were used to validate the kinetic model. The experimental and computational results showed the different kinetic roles of carbon dioxide and oxygen additives in methane conversion, due to the different dissociation and ionization energy of the two additive gases, as well as the thus produced electron energy distribution function (EEDF). Fuel oxidation by plasma generated O, O(1D), O2(a1△Ag), O2(b1∑+g) and O+ in partial oxidation of methane was observed essential for methane consumption, which resulted in an increase in methane conversion rate, compared to pure methane pyrolysis and dry reforming of methane with CO2 additive. It was also found that dry reforming of methane with CO2 was by far the easier to produce the syngas as well as C2 hydrocarbon species, due to the weak oxidation ability of CO2 and also the significant deposition of the electron energy on CH4 disso- ciation in a dry reforming discharge mixture. This kinetic study produced comparative data to demonstrate the contribution of CO2/O2 additive in non-eauilibrium plasma assisted methane conversion.展开更多
Ammonia is gaining increasing attention as a green alternative fuel for achieving large-scale carbon emission reduction. Despite its potential technical prospects, the harsh ignition conditions and slow flame propagat...Ammonia is gaining increasing attention as a green alternative fuel for achieving large-scale carbon emission reduction. Despite its potential technical prospects, the harsh ignition conditions and slow flame propagation speed of ammonia pose significant challenges to its application in engines. Non-equilibrium plasma has been identified as a promising method, but current research on plasma-enhanced ammonia combustion is limited and primarily focuses on ignition characteristics revealed by kinetic models. In this study, low-temperature and low-pressure chemistry in plasma-assisted ammonia oxidative pyrolysis is investigated by integrated studies of steady-state GC measurements and mathematical simulation. The detailed kinetic mechanism of NH_(3) decomposition in plasma-driven Ar/NH_(3) and Ar/NH_(3)/O_(2) mixtures has been developed. The numerical model has good agreements with the experimental measurements in NH_(3)/O_(2) consumption and N_(2)/H_(2) generation, which demonstrates the rationality of modelling. Based on the modelling results, species density profiles, path flux and sensitivity analysis for the key plasmaproduced species such as NH_(2), NH, H_(2), OH, H, O, O(^(1)D), O_(2)(a^(1)△_(g)), O_(2)(b^(1)∑_(g)^(+)), Ar^(*), H^(-), Ar^(+), NH_(3)^(+), O_(2)^(-) in the discharge and afterglow are analyzed in detail to illustrate the effectiveness of the active species on NH_(3) excitation and decomposition at low temperature and relatively higher E/N values. The results revealed that NH_(2), NH, H as well as H_(2) are primarily generated through the electron collision reactions e + NH_(3)→ e + NH_(2)+ H, e + NH_(3)→ e + NH + H_(2) and the excited-argon collision reaction Ar^(*) + NH_(3)+ H → Ar + NH_(2)+ 2H, which will then react with highly reactive oxidative species such as O_(2)^(*), O^(*), O, OH, and O_(2) to produce stable products of NOx and H_(2)O. NH_(3)→ NH is found a specific pathway for NH_(3) consumption with plasma assistance, which further highlights the enhanced kinetic effects.展开更多
Nanofluidic channels inspired by electric eels open a new era of efficient harvesting of clean blue osmotic energy from salinity gradients.Limited by less charge and weak ion selectivity of the raw material itself,ene...Nanofluidic channels inspired by electric eels open a new era of efficient harvesting of clean blue osmotic energy from salinity gradients.Limited by less charge and weak ion selectivity of the raw material itself,energy conversion through nanofluidic channels is still facing considerable challenges.Here,a facile and efficient strategy to enhance osmotic energy harvesting based on drastically increasing surface charge density of MXenes subnanochannels via oxygen plasma is proposed.This plasma could break Ti–C bonds in the MXenes subnanochannels and effectively facilitate the formation of more Ti–O,C═O,O–OH,and rutile with a stronger negative charge and work function,which leads the surface potential of MXenes membrane to increase from 205 to 430 mV.This significant rise of surface charge endows the MXenes membrane with high cation selectivity,which could make the output power density of the MXenes membrane increase by 248.2%,reaching a high value of 5.92Wm^(−2)in the artificial sea‐river water system.Furthermore,with the assistance of low‐quality heat at 50℃,the osmotic power is enhanced to an ultrahigh value of 9.68Wm^(−2),which outperforms those of the state‐of‐the‐art two‐dimensional(2D)nanochannel membranes.This exciting breakthrough demonstrates the enormous potential of the facile plasma‐treated 2D membranes for osmotic energy harvesting.展开更多
Non-equilibrium solidification structures of Cu55Ni45 and Cu55Ni43Co2 alloys were prepared by the molten glass purification cycle superheating method.The variation of the recalescence phenomenon with the degree of und...Non-equilibrium solidification structures of Cu55Ni45 and Cu55Ni43Co2 alloys were prepared by the molten glass purification cycle superheating method.The variation of the recalescence phenomenon with the degree of undercooling in the rapid solidification process was investigated using an infrared thermometer.The addition of the Co element affected the evolution of the recalescence phenomenon in Cu-Ni alloys.The images of the solid-liquid interface migration during the rapid solidification of supercooled melts were captured by using a high-speed camera.The solidification rate of Cu-Ni alloys,with the addition of Co elements,was explored.Finally,the grain refinement structure with low supercooling was characterised using electron backscatter diffraction(EBSD).The effect of Co on the microstructural evolution during nonequilibrium solidification of Cu-Ni alloys under conditions of small supercooling is investigated by comparing the microstructures of Cu55Ni45 and Cu55Ni43Co2 alloys.The experimental results show that the addition of a small amount of Co weakens the recalescence behaviour of the Cu55Ni45 alloy and significantly reduces the thermal strain in the rapid solidification phase.In the rapid solidification phase,the thermal strain is greatly reduced,and there is a significant increase in the characteristic undercooling degree.Furthermore,the addition of Co and the reduction of Cu not only result in a lower solidification rate of the alloy,but also contribute to the homogenisation of the grain size.展开更多
Coaxial plasma guns are a type of plasma source that produces plasma which propagates radially and axially controlled by the shape of the ground electrode, which has attracted much interest in several applications. In...Coaxial plasma guns are a type of plasma source that produces plasma which propagates radially and axially controlled by the shape of the ground electrode, which has attracted much interest in several applications. In this work, a 120° opening angle of CPG nozzle is used as a plasma gun configuration that operates at the energy of 150 J. The ionization of polyethylene insulator between the electrodes of the gun produces a cloud of hydrogen and carbon plasma.The triple Langmuir probe and Faraday cup are used to measure plasma density and plasma temperature. These methods are used to measure the on-axis and off-axis plasma divergence of the coaxial plasma gun. The peak values of ion densities measured at a distance of 25 mm on-axis from the plasma gun are(1.6±0.5)×10^(19)m^(-3)and(2.8±0.6)×10^(19)m^(-3)for hydrogen and carbon plasma respectively and the peak temperature is 3.02±0.5 eV. The mean propagation velocity of plasma is calculated using the transit times of plasma at different distances from the plasma gun and is found to be 4.54±0.25 cm/μs and 1.81±0.18 cm/μs for hydrogen and carbon plasma respectively. The Debye radius is obtained from the measured experimental data that satisfies the thin sheath approximation. The shot-to-shot stability of plasma parameters facilitates the use of plasma guns in laboratory experiments. These types of plasma sources can be used in many applications like plasma opening switches, plasma devices, and as plasma sources.展开更多
The effect of the gradient content of Co element on the solidification process of Cu-based alloy under deep under cooling conditions was explored.The non-equilibrium solidification structure of the under cooled alloy ...The effect of the gradient content of Co element on the solidification process of Cu-based alloy under deep under cooling conditions was explored.The non-equilibrium solidification structure of the under cooled alloy samples were analyzed.It is found that the rapidly solidified alloy has undergone twice grain refinement during the undercooling process.Characterization and significance of the maximum undercooling refinement structure of Cu60Ni35Co5 at T=253 K were analyzed.High-density defects were observed,such as dislocations,stacking faults networks,and twinning structures.The standard FCC diffraction pattern represents that it is still a single-phase structure.Based on the metallographic diagram,EBSD and TEM data analysis,it is illustrated that the occurrence of grain refinement under high undercooling is due to stress induced recrystallization.In addition,the laser cladding technology is used to coat Co-based alloy(Stellite12) coating on 304 stainless steel substrate;the microstructure of the coating cross-section was analyzed.It was found that the microstructure of the cross-section is presented as columnar crystals,planar crystals,and disordered growth direction,so that the coating has better hardness and wear resistance.By electrochemical corrosion of the substrate and coating,it can be seen that the Co and Cr elements present in the coating are more likely to form a dense passivation film,which improved the corrosion resistance of the coating.展开更多
During spacecraft re-entry,the challenge of measuring plasma sheath parameters directly contributes to difficulties in addressing communication blackout.In this work,we have discovered a phenomenon of multiple peaks i...During spacecraft re-entry,the challenge of measuring plasma sheath parameters directly contributes to difficulties in addressing communication blackout.In this work,we have discovered a phenomenon of multiple peaks in reflection data caused by the inhomogeneous plasma.Simulation results show that the multi-peak points fade away as the characteristic frequency is approached,resembling a series of gradually decreasing peaks.The positions and quantities of these points are positively correlated with electron density,yet they show no relation to collision frequency.This phenomenon is of significant reference value for future studies on the spatial distribution of plasmas,particularly for using microwave reflection signals in diagnosing the plasma sheath.展开更多
In astrophysics, the boundary conditions for plasma phenomena are provided by nature and the astronomer faces the problem of understanding them from a variety of observations [Hester J J et al 1996 Astrophys. J. 456 2...In astrophysics, the boundary conditions for plasma phenomena are provided by nature and the astronomer faces the problem of understanding them from a variety of observations [Hester J J et al 1996 Astrophys. J. 456 225], on the other hand, in laboratory plasma experiments the electromagnetic boundary conditions become a major problem in the set-up of the machine that produces the plasma, an issue that has to be investigated step by step and to be modified and adapted with great patience, in particular in the case of an innovative plasma confinement experiment. The PROTO-SPHERA machine [Alladio F et al 2006 Nucl. Fusion 46 S613] is a magnetic confinement experiment, that emulates in the laboratory the jet + torus plasma configurations often observed in astrophysics: an inner magnetized jet of plasma centered on the(approximate) axis of symmetry and surrounded by a magnetized plasma torus orthogonal to this jet. The PROTO-SPHERA plasma is simply connected, i.e., no metal current conducting rod is linked to the plasma torus, while instead it is the inner magnetized plasma jet(in the following always called the plasma centerpost) that is linked to the torus. It is mandatory that no spurious plasma current path modifies the optimal shape of the plasma centerpost. Moreover, as the plasma torus is produced and sustained, in absence of any applied inductive electric field, by the inner plasma centerpost through magnetic reconnections [Taylor J B and Turner M F 1989 Nucl.Fusion 29 219], it is required as well that spurious current paths do not surround the torus on its outboard, in order not to lower the efficiency of the magnetic reconnections that maintain the plasma torus at the expense of the plasma centerpost. Boundary conditions have been corrected,up to the point that the first sustainment in steady state has been achieved for the combined plasma.展开更多
A three-fluid equilibrium plasma with bulk plasma and energetic electrons has been observed on the Xuanlong-50(EXL-50) spherical torus, where the energetic electrons play a crucial role in sustaining the plasma curren...A three-fluid equilibrium plasma with bulk plasma and energetic electrons has been observed on the Xuanlong-50(EXL-50) spherical torus, where the energetic electrons play a crucial role in sustaining the plasma current and pressure. In this study, the equilibrium of a multi-fluid plasma was investigated by analyzing the relationship between the external vertical magnetic field(B_(V)),plasma current(I_(p)), the poloidal ratio(β_(p)) and the Shafranov formula. Remarkably, our research demonstrates some validity of the Shafranov formula in the presence of multi-fluid plasma in EXL-50 spherical torus. This finding holds significant importance for future reactors as it allows for differentiation between alpha particles and background plasma. The study of multi-fluid plasma provides a significant reference value for the equilibrium reconstruction of burning plasma involving alpha particles.展开更多
The matrix thermal properties have an important impact on laser-induced plasma,as the thermal effect dominates the interaction between ns-pulsed laser and matter,especially in metals.We used a series of pure metals an...The matrix thermal properties have an important impact on laser-induced plasma,as the thermal effect dominates the interaction between ns-pulsed laser and matter,especially in metals.We used a series of pure metals and aluminum alloys to measure plasma temperature and electron density through laser-induced breakdown spectroscopy,in order to investigate the effect of matrix thermal properties on laser-induced plasma.In pure metals,a significant negative linear correlation was observed between the matrix thermal storage coefficient and plasma temperature,while a weak correlation was observed with electron density.The results indicate that metals with low thermal conductivity or specific heat capacity require less laser energy for thermal diffusion or melting and evaporation,resulting in higher ablation rates and higher plasma temperatures.However,considering ionization energy,thermal effects may be a secondary factor affecting electron density.The experiment of aluminum alloy further confirms the influence of thermal conductivity on plasma temperature and its mechanism explanation.展开更多
X-ray sources with tunable energy spectra have a wide range of applications in different scenarios due to their different penetration depths.However,existing x-ray sources face difficulties in terms of energy regulati...X-ray sources with tunable energy spectra have a wide range of applications in different scenarios due to their different penetration depths.However,existing x-ray sources face difficulties in terms of energy regulation.In this paper,we present a scheme for tuning the energy spectrum of a betatron x-ray generated from a relativistic electron bunch oscillating in a plasma wakefield.The center energy of the x-ray source can be tuned from several keV to several hundred keV by changing the plasma density,thereby extending the control range by an order of magnitude.At different central energies,the brightness of the betatron radiation is in the range of 3.7×10^(22)to 5.5×10^(22)photons/(0.1%BW·s·mm^(2)·mrad^(2))and the photon divergence angle is about 2 mrad.This high-brightness,energy-controlled betatron source could pave the way to a wide range of applications requiring photons of specific energy,such as phase-contrast imaging in medicine,non-destructive testing and material analysis in industry,and imaging in nuclear physics.展开更多
A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static m...A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static magnetic field, direct current is applied to a circular coil located at the top of the chamber. By adjusting the magnetic field's configuration, which is done by altering the coil current and position, both the plasma uniformity and density can be significantly modulated. In the absence of the magnetic field, the plasma density exhibits an inhomogeneous distribution characterized by higher values at the plasma edge and lower values at the center. The introduction of a magnetic field generated by coils results in a significant increase in electron density near the coils. Furthermore, an increase in the sets of coils improves the uniformity of the plasma. By flexibly adjusting the positions of the coils and the applied current,a substantial enhancement in overall uniformity can be achieved. These findings demonstrate the feasibility of using this method for achieving uniform plasma densities in industrial applications.展开更多
基金National Natural Science Foundation of China(Nos.20576079,20776159)
文摘Catalysis and regeneration efficiency of granular activated carbon (GAC) and activated carbon fiber (ACF) were investigated in a non-equilibrium plasma water treatment reactor with a combination of pulsed streamer discharge and GAC or ACF. The experimental results show that the degradation efficiency of methyl orange (MO) by the combined treatment can increase 22% (for GAC) and 24% (for ACF) respectively compared to pulsed discharge treatment alone, indicating that the combined treatment has a synergetic effect. The MO degradation efficiency by the combined treatment with pulsed discharge and saturated GAC or ACF can increase 12% and 17% respectively compared to pulsed discharge treatment alone. Both GAC and ACF show catalysis and the catalysis of ACF is prominent. Meanwhile, the regeneration of GAC and ACF are realized in this process. When H202 is introduced into the system, the utilization efficiency of ozone and ultraviolet light is improved and the regeneration efficiency of GAC and ACF is also increased.
文摘In the reaction of methane and carbon dioxide to C2 hydrocarbons under non-equilibrium plasma, methane conversion was decreased, but selectivity of C2 hydrocarbons was increased when using La2O3/?Al2O3 as catalyst. So the yield of C2 hydrocarbons was higher than using plasma alone. The synergism of La2O3/?Al2O3 and plasma gave methane conversion of 24.9% and C2 yield of 18.1%. The distribution of C2 hydrocarbons changed when Pd- La2O3/?Al2O3 was used as catalyst, the major C2 product was ethylene.
基金National High-tech Research & Development Plan(863 Projeet)(No.2008AA062317)National Natural Science Foundation of China(No.50578020)
文摘A mini-type of plasma source was studied experimentally. The results showed that the plasma density, which was generated by an atmospheric non-equilibrium plasma source, rises with the increase in driving electric-field and the momentum of gas particles. For a driving electricfield of 56 kV/cm and a gas particles' momentum of 10^9 × 10^-22 g·m/s, the ion density can exceed 10^10/cm^3 while the effective volume of the plasma source is only 2.5 cm^2. This study may help develop a method to generate a minitype plasma source with low energy consumption but high ion concentration. This source can be used in chemical industry, environmental engineering and military applications.
文摘A few factors effecting the reaction of plasma dehydrocoupling of methane have been investigated. The experiment shows that plasma power load, i.e. the ratio of methane flow to plasma power, is the most important factor effecting methane dehydrocoupling. The products of the reaction are mainly acetylene, ethylene, ethane and unreacted methane etc. If oxygen with a suitable molar ratio is introduced into plasma region at a reasonable position, the selectivity of C2 hydrocarbons can be increased greatly.
文摘In this paper, hydrogen is first utilized in the study on methane coupling under nonequilibrium plasma. Results indicate that the addition of hydrogen is beneficial. to the methane coupling so as to increase the conversion rate of methane and the yield of C2 hydrocarbon with a gradual increase in the addition of hydrogen in a certain range of proportionality. This conclusion explores a new route of hydrogenated methane coupling.
基金supported by a grant from the National Natural Science Foundation of China(No.10875048)
文摘Recently, plasma sterilization has attracted increasing attention in dental community ibr the atmospheric pressure non-equilibrium plasma jet (APNPs), which is driven by a kilohertz pulsed DC power, may be applied to the dental and oral diseases. However, it is still in doubt whether APNPs can effectively kill pathogenic bacteria in the oral cavity and produce no harmful effects on normal oral tissues, especially on normal mucosa. The aim of this study was to evaluate the bacterial-killing effect of APNPs in the biofilms containing a single breed of bacteria (Porphyromonas gingivalis, Pg.), and the pathological changes of the oral mucosa after treatment by APNPs. P.g. was incubated to form the biofilms in vitro, and the samples were divided into three groups randomly: group A (blank control); group B in which the biofilms were treated by APNPs (the setting of the equipment: 10 kHz, 1600 ns and 8 kV); group C in which the biofilms were exposed only to a gas jet without ignition of the plasma. Each group had three samples and each sample was processed for up to 5 min. The biofilms were then fluorescently stained, observed and photographed under a laser scanning confocal microscope. In the animal experiment, six male Japanese white rabbits were divided into two groups randomly (n=3 in each group) in terms of the different post-treatment time (1-day group and 5-day group). The buccal mucosa of the left side and the mucosa of the ventral surface of the tongue were treated by APNPs for 10 min in the same way as the bacterial biofilm experiment in each rabbit, and the corresponding mucosa of the other sides served as normal control. The clinical manifestations of the oral mucosa were observed and recorded every day. The rabbits were sacrificed one or five day(s) after APNPs treatment. The oral mucosa were harvested and prepared to haematoxylin and eosin-stained sections. Clinical observation and histopathological scores were used to assess mucosal changes. The results showed the obvious P.g. biofilms were formed at 10 days, and most of the bacteria in groups A and C were alive under a laser scanning confocal microscope, but the bacteria in the group B were almost all dead. In animal experiment, no ulcers, anabrosis and oral mucositis were found in both the 1-day and 5-day groups. The aver- age mucous membrane irritation index was -0.83 and -0.67 in the 1-day and 5-day groups, respectively, suggesting that no intense mucosal membrane irritation responses occurred. It was concluded that APNPs could effectively kill Pg. in the biofilms and did not cause any pathological changes in the normal mucosa, suggesting that the plasma jet (APNPs) may be applied to oral diseases as a novel sterilization device in the future.
基金supported by grants from the National Natural Sciences Foundation of China (No. 30700717)research Fund for the Doctoral Program of Higher Education of China (No. 20070487140)
文摘In this study, the sterilizing effect of atmospheric pressure nonequilibrium plasmas (APNPs) on Neisseria gonorrhoeae (N. gonorrhoeae) was preliminarily examined and the possible mechanisms were explored. N. gonorrhoeae FA1090, FA19 and MSll were treated by APNPs and their survival rate was analyzed by using CFUs counting and structurally studied by laser scanning confocal microscopy. The morphological changes of bacterial cell membrane and wall were studied under TEM. Our results showed that APNPs had strong sterilizing effect on N. gonorrhoeae. The survival rate of MS11 in N. gonorrhoeae liquid medium was 60.65% after disinfection with the APNPs for 5 rain, whereas, the survival rate of FA19 was 92.60% and the rate of FA1090 was 96.40%. The survival rate of MS 11 was 21.13% after exposure to APNPs for 6 rain, whereas the survival rate of FA19 was 31.60% and the rate of FA1090 was 91.00%. N. gonorrhoeae was structurally damaged after treatment with APNPs. It is concluded that APNPs is able to effectively and quickly kill the N. gonorrhoeae, and the killing effect is related to the architectural damage of cell membrane.
基金Supported by the National Natural Science Foundation of China(51376021,21676024)
文摘A temperature-controlled and pressure-controlled coaxial dielectric barrier discharge (DBD) reactor was developed to decouple the thermal and kinetic effects of radio frequency (RF) discharge on methane conversion, and further to compare the kinetic behaviors of the mechanistically similar reactions of methane conversion with O2 and CO2 additives. A kinetic mechanism for RF plasma assisted methane conversion was assembled. The formation of products in the RF plasma reactor was measured with Gas Chromatography (GC-TCD) and the data were used to validate the kinetic model. The experimental and computational results showed the different kinetic roles of carbon dioxide and oxygen additives in methane conversion, due to the different dissociation and ionization energy of the two additive gases, as well as the thus produced electron energy distribution function (EEDF). Fuel oxidation by plasma generated O, O(1D), O2(a1△Ag), O2(b1∑+g) and O+ in partial oxidation of methane was observed essential for methane consumption, which resulted in an increase in methane conversion rate, compared to pure methane pyrolysis and dry reforming of methane with CO2 additive. It was also found that dry reforming of methane with CO2 was by far the easier to produce the syngas as well as C2 hydrocarbon species, due to the weak oxidation ability of CO2 and also the significant deposition of the electron energy on CH4 disso- ciation in a dry reforming discharge mixture. This kinetic study produced comparative data to demonstrate the contribution of CO2/O2 additive in non-eauilibrium plasma assisted methane conversion.
基金the grant support from the National Natural Science Foundation of China (No. 21975018, 22278032)。
文摘Ammonia is gaining increasing attention as a green alternative fuel for achieving large-scale carbon emission reduction. Despite its potential technical prospects, the harsh ignition conditions and slow flame propagation speed of ammonia pose significant challenges to its application in engines. Non-equilibrium plasma has been identified as a promising method, but current research on plasma-enhanced ammonia combustion is limited and primarily focuses on ignition characteristics revealed by kinetic models. In this study, low-temperature and low-pressure chemistry in plasma-assisted ammonia oxidative pyrolysis is investigated by integrated studies of steady-state GC measurements and mathematical simulation. The detailed kinetic mechanism of NH_(3) decomposition in plasma-driven Ar/NH_(3) and Ar/NH_(3)/O_(2) mixtures has been developed. The numerical model has good agreements with the experimental measurements in NH_(3)/O_(2) consumption and N_(2)/H_(2) generation, which demonstrates the rationality of modelling. Based on the modelling results, species density profiles, path flux and sensitivity analysis for the key plasmaproduced species such as NH_(2), NH, H_(2), OH, H, O, O(^(1)D), O_(2)(a^(1)△_(g)), O_(2)(b^(1)∑_(g)^(+)), Ar^(*), H^(-), Ar^(+), NH_(3)^(+), O_(2)^(-) in the discharge and afterglow are analyzed in detail to illustrate the effectiveness of the active species on NH_(3) excitation and decomposition at low temperature and relatively higher E/N values. The results revealed that NH_(2), NH, H as well as H_(2) are primarily generated through the electron collision reactions e + NH_(3)→ e + NH_(2)+ H, e + NH_(3)→ e + NH + H_(2) and the excited-argon collision reaction Ar^(*) + NH_(3)+ H → Ar + NH_(2)+ 2H, which will then react with highly reactive oxidative species such as O_(2)^(*), O^(*), O, OH, and O_(2) to produce stable products of NOx and H_(2)O. NH_(3)→ NH is found a specific pathway for NH_(3) consumption with plasma assistance, which further highlights the enhanced kinetic effects.
基金National Natural Science Foundation of China,Grant/Award Number:52175174China Postdoctoral Science Foundation,Grant/Award Number:2022M721791National Key Research and Development Program of China,Grant/Award Number:2020YFA0711003。
文摘Nanofluidic channels inspired by electric eels open a new era of efficient harvesting of clean blue osmotic energy from salinity gradients.Limited by less charge and weak ion selectivity of the raw material itself,energy conversion through nanofluidic channels is still facing considerable challenges.Here,a facile and efficient strategy to enhance osmotic energy harvesting based on drastically increasing surface charge density of MXenes subnanochannels via oxygen plasma is proposed.This plasma could break Ti–C bonds in the MXenes subnanochannels and effectively facilitate the formation of more Ti–O,C═O,O–OH,and rutile with a stronger negative charge and work function,which leads the surface potential of MXenes membrane to increase from 205 to 430 mV.This significant rise of surface charge endows the MXenes membrane with high cation selectivity,which could make the output power density of the MXenes membrane increase by 248.2%,reaching a high value of 5.92Wm^(−2)in the artificial sea‐river water system.Furthermore,with the assistance of low‐quality heat at 50℃,the osmotic power is enhanced to an ultrahigh value of 9.68Wm^(−2),which outperforms those of the state‐of‐the‐art two‐dimensional(2D)nanochannel membranes.This exciting breakthrough demonstrates the enormous potential of the facile plasma‐treated 2D membranes for osmotic energy harvesting.
文摘Non-equilibrium solidification structures of Cu55Ni45 and Cu55Ni43Co2 alloys were prepared by the molten glass purification cycle superheating method.The variation of the recalescence phenomenon with the degree of undercooling in the rapid solidification process was investigated using an infrared thermometer.The addition of the Co element affected the evolution of the recalescence phenomenon in Cu-Ni alloys.The images of the solid-liquid interface migration during the rapid solidification of supercooled melts were captured by using a high-speed camera.The solidification rate of Cu-Ni alloys,with the addition of Co elements,was explored.Finally,the grain refinement structure with low supercooling was characterised using electron backscatter diffraction(EBSD).The effect of Co on the microstructural evolution during nonequilibrium solidification of Cu-Ni alloys under conditions of small supercooling is investigated by comparing the microstructures of Cu55Ni45 and Cu55Ni43Co2 alloys.The experimental results show that the addition of a small amount of Co weakens the recalescence behaviour of the Cu55Ni45 alloy and significantly reduces the thermal strain in the rapid solidification phase.In the rapid solidification phase,the thermal strain is greatly reduced,and there is a significant increase in the characteristic undercooling degree.Furthermore,the addition of Co and the reduction of Cu not only result in a lower solidification rate of the alloy,but also contribute to the homogenisation of the grain size.
基金supported by Bhabha Atomic Research Centre, Department of Atomic Energy, Government of IndiaDepartment of Atomic Energy, Government of India for financial assistance under DAE Doctoral Fellowship Scheme-2018。
文摘Coaxial plasma guns are a type of plasma source that produces plasma which propagates radially and axially controlled by the shape of the ground electrode, which has attracted much interest in several applications. In this work, a 120° opening angle of CPG nozzle is used as a plasma gun configuration that operates at the energy of 150 J. The ionization of polyethylene insulator between the electrodes of the gun produces a cloud of hydrogen and carbon plasma.The triple Langmuir probe and Faraday cup are used to measure plasma density and plasma temperature. These methods are used to measure the on-axis and off-axis plasma divergence of the coaxial plasma gun. The peak values of ion densities measured at a distance of 25 mm on-axis from the plasma gun are(1.6±0.5)×10^(19)m^(-3)and(2.8±0.6)×10^(19)m^(-3)for hydrogen and carbon plasma respectively and the peak temperature is 3.02±0.5 eV. The mean propagation velocity of plasma is calculated using the transit times of plasma at different distances from the plasma gun and is found to be 4.54±0.25 cm/μs and 1.81±0.18 cm/μs for hydrogen and carbon plasma respectively. The Debye radius is obtained from the measured experimental data that satisfies the thin sheath approximation. The shot-to-shot stability of plasma parameters facilitates the use of plasma guns in laboratory experiments. These types of plasma sources can be used in many applications like plasma opening switches, plasma devices, and as plasma sources.
基金Funded by the Basic Research Projects in Shanxi Province(No.202103021224183)。
文摘The effect of the gradient content of Co element on the solidification process of Cu-based alloy under deep under cooling conditions was explored.The non-equilibrium solidification structure of the under cooled alloy samples were analyzed.It is found that the rapidly solidified alloy has undergone twice grain refinement during the undercooling process.Characterization and significance of the maximum undercooling refinement structure of Cu60Ni35Co5 at T=253 K were analyzed.High-density defects were observed,such as dislocations,stacking faults networks,and twinning structures.The standard FCC diffraction pattern represents that it is still a single-phase structure.Based on the metallographic diagram,EBSD and TEM data analysis,it is illustrated that the occurrence of grain refinement under high undercooling is due to stress induced recrystallization.In addition,the laser cladding technology is used to coat Co-based alloy(Stellite12) coating on 304 stainless steel substrate;the microstructure of the coating cross-section was analyzed.It was found that the microstructure of the cross-section is presented as columnar crystals,planar crystals,and disordered growth direction,so that the coating has better hardness and wear resistance.By electrochemical corrosion of the substrate and coating,it can be seen that the Co and Cr elements present in the coating are more likely to form a dense passivation film,which improved the corrosion resistance of the coating.
文摘During spacecraft re-entry,the challenge of measuring plasma sheath parameters directly contributes to difficulties in addressing communication blackout.In this work,we have discovered a phenomenon of multiple peaks in reflection data caused by the inhomogeneous plasma.Simulation results show that the multi-peak points fade away as the characteristic frequency is approached,resembling a series of gradually decreasing peaks.The positions and quantities of these points are positively correlated with electron density,yet they show no relation to collision frequency.This phenomenon is of significant reference value for future studies on the spatial distribution of plasmas,particularly for using microwave reflection signals in diagnosing the plasma sheath.
文摘In astrophysics, the boundary conditions for plasma phenomena are provided by nature and the astronomer faces the problem of understanding them from a variety of observations [Hester J J et al 1996 Astrophys. J. 456 225], on the other hand, in laboratory plasma experiments the electromagnetic boundary conditions become a major problem in the set-up of the machine that produces the plasma, an issue that has to be investigated step by step and to be modified and adapted with great patience, in particular in the case of an innovative plasma confinement experiment. The PROTO-SPHERA machine [Alladio F et al 2006 Nucl. Fusion 46 S613] is a magnetic confinement experiment, that emulates in the laboratory the jet + torus plasma configurations often observed in astrophysics: an inner magnetized jet of plasma centered on the(approximate) axis of symmetry and surrounded by a magnetized plasma torus orthogonal to this jet. The PROTO-SPHERA plasma is simply connected, i.e., no metal current conducting rod is linked to the plasma torus, while instead it is the inner magnetized plasma jet(in the following always called the plasma centerpost) that is linked to the torus. It is mandatory that no spurious plasma current path modifies the optimal shape of the plasma centerpost. Moreover, as the plasma torus is produced and sustained, in absence of any applied inductive electric field, by the inner plasma centerpost through magnetic reconnections [Taylor J B and Turner M F 1989 Nucl.Fusion 29 219], it is required as well that spurious current paths do not surround the torus on its outboard, in order not to lower the efficiency of the magnetic reconnections that maintain the plasma torus at the expense of the plasma centerpost. Boundary conditions have been corrected,up to the point that the first sustainment in steady state has been achieved for the combined plasma.
文摘A three-fluid equilibrium plasma with bulk plasma and energetic electrons has been observed on the Xuanlong-50(EXL-50) spherical torus, where the energetic electrons play a crucial role in sustaining the plasma current and pressure. In this study, the equilibrium of a multi-fluid plasma was investigated by analyzing the relationship between the external vertical magnetic field(B_(V)),plasma current(I_(p)), the poloidal ratio(β_(p)) and the Shafranov formula. Remarkably, our research demonstrates some validity of the Shafranov formula in the presence of multi-fluid plasma in EXL-50 spherical torus. This finding holds significant importance for future reactors as it allows for differentiation between alpha particles and background plasma. The study of multi-fluid plasma provides a significant reference value for the equilibrium reconstruction of burning plasma involving alpha particles.
基金supported by the National Key Research and Development Project(Grant No.2018YFC2001100).
文摘The matrix thermal properties have an important impact on laser-induced plasma,as the thermal effect dominates the interaction between ns-pulsed laser and matter,especially in metals.We used a series of pure metals and aluminum alloys to measure plasma temperature and electron density through laser-induced breakdown spectroscopy,in order to investigate the effect of matrix thermal properties on laser-induced plasma.In pure metals,a significant negative linear correlation was observed between the matrix thermal storage coefficient and plasma temperature,while a weak correlation was observed with electron density.The results indicate that metals with low thermal conductivity or specific heat capacity require less laser energy for thermal diffusion or melting and evaporation,resulting in higher ablation rates and higher plasma temperatures.However,considering ionization energy,thermal effects may be a secondary factor affecting electron density.The experiment of aluminum alloy further confirms the influence of thermal conductivity on plasma temperature and its mechanism explanation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11921006 and 12175058)the Beijing Distinguished Young Scientist Program and National Grand Instrument Project (Grant No.SQ2019YFF01014400)+1 种基金the Beijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park (Grant No.Z231100006023003)in part funded by United Kingdom EPSRC (Grant Nos.EP/G054950/1,EP/G056803/1,EP/G055165/1,and EP/M022463/1)。
文摘X-ray sources with tunable energy spectra have a wide range of applications in different scenarios due to their different penetration depths.However,existing x-ray sources face difficulties in terms of energy regulation.In this paper,we present a scheme for tuning the energy spectrum of a betatron x-ray generated from a relativistic electron bunch oscillating in a plasma wakefield.The center energy of the x-ray source can be tuned from several keV to several hundred keV by changing the plasma density,thereby extending the control range by an order of magnitude.At different central energies,the brightness of the betatron radiation is in the range of 3.7×10^(22)to 5.5×10^(22)photons/(0.1%BW·s·mm^(2)·mrad^(2))and the photon divergence angle is about 2 mrad.This high-brightness,energy-controlled betatron source could pave the way to a wide range of applications requiring photons of specific energy,such as phase-contrast imaging in medicine,non-destructive testing and material analysis in industry,and imaging in nuclear physics.
基金financially supported by the National MCF Energy R&D Program of China(No.2022YFE03190100)National Natural Science Foundation of China(Nos.11935005,12105035 and U21A20438)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2021B1515120018)the Fundamental Research Funds for the Central Universities(No.DUT21TD104)the Advanced Space Propulsion Laboratory of BICE and Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology(No.Lab ASP-2020-01).
文摘A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static magnetic field, direct current is applied to a circular coil located at the top of the chamber. By adjusting the magnetic field's configuration, which is done by altering the coil current and position, both the plasma uniformity and density can be significantly modulated. In the absence of the magnetic field, the plasma density exhibits an inhomogeneous distribution characterized by higher values at the plasma edge and lower values at the center. The introduction of a magnetic field generated by coils results in a significant increase in electron density near the coils. Furthermore, an increase in the sets of coils improves the uniformity of the plasma. By flexibly adjusting the positions of the coils and the applied current,a substantial enhancement in overall uniformity can be achieved. These findings demonstrate the feasibility of using this method for achieving uniform plasma densities in industrial applications.