A modified nonlinear fatigue damage accumulation model based on the Manson-Halford theory was presented,and the new model was developed for fatigue life prediction under constant and variable amplitude loading, which ...A modified nonlinear fatigue damage accumulation model based on the Manson-Halford theory was presented,and the new model was developed for fatigue life prediction under constant and variable amplitude loading, which took the effects of the load interactions and the phenomenon of material's strength degradation into account. The experimental data of the 30 Cr Mn Si A and the LY-12 cz from literature were used to verify the proposed model. And from the good agreement between the experimental data and predicted results,we can see it clear that the proposed method can be applied to predicting fatigue life under different loadings.展开更多
The accuracy of the traditional assessment method of the quality of experience(Qo E) has been facing challenges with the growth of high-definition(HD) video streaming services.Image display-quality damage is the main ...The accuracy of the traditional assessment method of the quality of experience(Qo E) has been facing challenges with the growth of high-definition(HD) video streaming services.Image display-quality damage is the main factor that affects the Qo E in HD video services through UDP network transmission.In this paper,we introduce a novel objective factor known as image damage accumulation(IDA) to assess user's Qo E in HD video services.First,this paper quantitatively analyzed the effect on user quality of experience by IDA and established a mapping relationship between mean opinion scores and IDA.Furthermore,the probability of image damage caused by compression and transmission were analyzed.Based on this analysis,an objective Qo E assessment and prediction method for HD video stream service that evaluated the user experience according to IDA are proposed.The proposed method can achieve assessment and prediction accuracy on three distinct subjective tests.展开更多
The fatigue damage accumulation of [±20°] laminated steel cord reinforced rubber composite under T-T loading was studied. Results indicate that the increase in the cyclic maximum strain exhibits three-stage ...The fatigue damage accumulation of [±20°] laminated steel cord reinforced rubber composite under T-T loading was studied. Results indicate that the increase in the cyclic maximum strain exhibits three-stage tendency in the process of fatigue. The macroscopic fatigue damage initiates from the ends of steel cords in the form of cylindrical crack. Damage propagates along with the increase in crack numbers, the cord/matrix interface debonding and the growth of interply cracks. By using the dynamic creep as parameter, a linear fatigue damage accumulation model was established. This model can be used under dual loading conditions to estimate the residual fatigue life of the specimen.展开更多
Experime ntal research results of surface damage accumulation in rail steel under rolling with slippage are presented. Hertz contact for two rollers made of rail and whe el steels was realized in the test. The influe...Experime ntal research results of surface damage accumulation in rail steel under rolling with slippage are presented. Hertz contact for two rollers made of rail and whe el steels was realized in the test. The influence of loading regime upon wear of rail is considered. The estimation of characteristics of surface fracture resis tance for rail steel is made. The method to predict the life of rail steel under given conditions of regular loading is proposed.展开更多
The failure wave phenomenon was interpreted in glass media under the high velocity impact with the stress levels below the Hugoniot elastic limit. In view of the plate impact experimental observations a damage-accumul...The failure wave phenomenon was interpreted in glass media under the high velocity impact with the stress levels below the Hugoniot elastic limit. In view of the plate impact experimental observations a damage-accumulating model predominated by the deviatoric stress impulse was proposed while Heaviside function was adopted in the damage-accumulating model to describe the failure delay in the interior of Materials. Features of the failure layer and propagation mechanism as well as their dynamic characteristics were further presented. The reduction in failure wave propagation speed is pointed out as the reflected rarefaction waves reflect again from the failure layer boundary.展开更多
The brake unit bracket of a bogie frame is an important load-carrying component, particularly under emergency start/stop conditions. Conventional infinite/safe life approaches provide an over-conservative recommendati...The brake unit bracket of a bogie frame is an important load-carrying component, particularly under emergency start/stop conditions. Conventional infinite/safe life approaches provide an over-conservative recommendation for the allowable strength and lifetime, which hinders the lightweight design of modern railway vehicles. In this study, to ensure the reliability and durability of a brake unit bracket, an attempt was made to integrate the nominal stress method and an advanced damage tolerance method. First, a complex bogie frame was modelled using solid elements instead of plate and beam elements. A hot spot stress region on the bracket was found under an eight-stage load spectrum obtained from the Wuhan–Guangzhou high-speed railway line. Based on the probability of foreign damage, a semi-elliptical surface crack was then assumed for residual life assessment. The results obtained by the cumulative damage and damage tolerance methods show that the brake unit bracket can operate for over 30 years. Moreover, even if a 2-mm depth crack exists, the brake unit bracket can be safely operated for more than 2.27 years, with the hope that the crack can be detected in subsequent maintenance procedures. Finally, an appropriate safety margin was suggested which provides a basis for the life prediction and durability assessment of brake unit brackets of high-speed railways.展开更多
Cadmium-induced DNA degradation in gill cells of the scallop Mizuhopectenyessoensis was assessed using the comet assay (single-cell gel electrophoresis). Accumulation of highly toxic cadmium in the gill cells of biv...Cadmium-induced DNA degradation in gill cells of the scallop Mizuhopectenyessoensis was assessed using the comet assay (single-cell gel electrophoresis). Accumulation of highly toxic cadmium in the gill cells of bivalve is accompanied by the damage of the cell genome revealed as DNA migration in the comet assay. The main mechanisms of Cd effects on the integrity of the DNA structure are discussed.展开更多
The damage to the masonry-infilled reinforced concrete( RC) frame buildings in Charikot,the capital city of Dolakha district in Nepal,during the 2015 April-to-May Nepal earthquake sequence is reported. Most of these b...The damage to the masonry-infilled reinforced concrete( RC) frame buildings in Charikot,the capital city of Dolakha district in Nepal,during the 2015 April-to-May Nepal earthquake sequence is reported. Most of these buildings were built by the owners with little governmental inspections regarding their structural design or constructional quality. Although they generally performed better than other structural systems such as stone-masonry houses,the RC frames sustained extensive damage ranging from cracking of infill to complete collapse. In particular,eight of the 72 inspected RC frames alongside an uphill street collapsed in different ways. In addition to the un-engineered nature of these RC frames,their collapse could also be attributed to multiple technical reasons including the effect of terrain, the pounding between adjacent buildings and the accumulative damage in the earthquake sequence.展开更多
Seismic earthquakes are a real danger for the construction evolution of high rise buildings.The rate of earthquakes around the world is noteworthy in a wide range of construction areas.In this study,we present the dyn...Seismic earthquakes are a real danger for the construction evolution of high rise buildings.The rate of earthquakes around the world is noteworthy in a wide range of construction areas.In this study,we present the dynamic behavior of a high-rise RC building with dynamic isolators(lead-rubber-bearing),in comparison with a traditional shear wall system of the same building.Seismic isolation has been introduced in building construction to increase the structural stability and to protect the non-structural components against the damaging effects of an earthquake.In order to clarify the influence of incorporating lead rubber bearing isolators in the seismic response and in reducing seismic damages;a comparative study is performed between a fixed base system(shear wall system)and an isolated base system(Lead Rubber Bearing)on an irregular high rise reinforced concrete(RC)building located in Beirut consisting of 48 storeys almost asymmetric orthogonally.For this purpose,a non-linear analysis of a real earthquake acceleration record(EI Centro seismic signal)is conducted,so that the mode shapes,the damping ratio and the natural frequencies of the two models are obtained using ETABS software.The results prove a substantial elongation of the building period,as well as a reduction in the building displacement,the roof acceleration,the inter-storey drift ratio and the base shear force of isolated building relative to fixed-base building.This study proves that this technology is applicable to high rise buildings with acceptable results.展开更多
基金National Natural Science Foundation of China(No.11272082)Fundamental Research Funds for the Central Universities(No.E022050205)the Open Research Fund of Key Laboratory of Fluid and Power Machinery of Xi Hua University,China(No.szjj2013-03)
文摘A modified nonlinear fatigue damage accumulation model based on the Manson-Halford theory was presented,and the new model was developed for fatigue life prediction under constant and variable amplitude loading, which took the effects of the load interactions and the phenomenon of material's strength degradation into account. The experimental data of the 30 Cr Mn Si A and the LY-12 cz from literature were used to verify the proposed model. And from the good agreement between the experimental data and predicted results,we can see it clear that the proposed method can be applied to predicting fatigue life under different loadings.
基金supported by the 863 Program(2014AA01A701)NSFC(61271187)+1 种基金the PAPD fundthe CICAEET fund
文摘The accuracy of the traditional assessment method of the quality of experience(Qo E) has been facing challenges with the growth of high-definition(HD) video streaming services.Image display-quality damage is the main factor that affects the Qo E in HD video services through UDP network transmission.In this paper,we introduce a novel objective factor known as image damage accumulation(IDA) to assess user's Qo E in HD video services.First,this paper quantitatively analyzed the effect on user quality of experience by IDA and established a mapping relationship between mean opinion scores and IDA.Furthermore,the probability of image damage caused by compression and transmission were analyzed.Based on this analysis,an objective Qo E assessment and prediction method for HD video stream service that evaluated the user experience according to IDA are proposed.The proposed method can achieve assessment and prediction accuracy on three distinct subjective tests.
基金The authors gratefully acknowledge the financial support by the National Natural Sciece Foundation of China under grant No. 10302008the Science Foundation of Heilongjiang Province under project No. A0309.
文摘The fatigue damage accumulation of [±20°] laminated steel cord reinforced rubber composite under T-T loading was studied. Results indicate that the increase in the cyclic maximum strain exhibits three-stage tendency in the process of fatigue. The macroscopic fatigue damage initiates from the ends of steel cords in the form of cylindrical crack. Damage propagates along with the increase in crack numbers, the cord/matrix interface debonding and the growth of interply cracks. By using the dynamic creep as parameter, a linear fatigue damage accumulation model was established. This model can be used under dual loading conditions to estimate the residual fatigue life of the specimen.
基金SupportedbytheNationalNaturalScienceFoundationofChina (No .5 9935 10 0 )
文摘Experime ntal research results of surface damage accumulation in rail steel under rolling with slippage are presented. Hertz contact for two rollers made of rail and whe el steels was realized in the test. The influence of loading regime upon wear of rail is considered. The estimation of characteristics of surface fracture resis tance for rail steel is made. The method to predict the life of rail steel under given conditions of regular loading is proposed.
文摘The failure wave phenomenon was interpreted in glass media under the high velocity impact with the stress levels below the Hugoniot elastic limit. In view of the plate impact experimental observations a damage-accumulating model predominated by the deviatoric stress impulse was proposed while Heaviside function was adopted in the damage-accumulating model to describe the failure delay in the interior of Materials. Features of the failure layer and propagation mechanism as well as their dynamic characteristics were further presented. The reduction in failure wave propagation speed is pointed out as the reflected rarefaction waves reflect again from the failure layer boundary.
基金Supported by National Natural Science Foundation of China(Grant No.11572267)Sichuan Science and Technology Program(Grant No.2017JY0216)+1 种基金Open Research Project of State Key Laboratory for Strength and Vibration of Mechanical Structures of China(Grant No.SV2016-KF-21)Open Research Project of State Key Laboratory of Traction Power of China(Grant No.2018TPL_T03)
文摘The brake unit bracket of a bogie frame is an important load-carrying component, particularly under emergency start/stop conditions. Conventional infinite/safe life approaches provide an over-conservative recommendation for the allowable strength and lifetime, which hinders the lightweight design of modern railway vehicles. In this study, to ensure the reliability and durability of a brake unit bracket, an attempt was made to integrate the nominal stress method and an advanced damage tolerance method. First, a complex bogie frame was modelled using solid elements instead of plate and beam elements. A hot spot stress region on the bracket was found under an eight-stage load spectrum obtained from the Wuhan–Guangzhou high-speed railway line. Based on the probability of foreign damage, a semi-elliptical surface crack was then assumed for residual life assessment. The results obtained by the cumulative damage and damage tolerance methods show that the brake unit bracket can operate for over 30 years. Moreover, even if a 2-mm depth crack exists, the brake unit bracket can be safely operated for more than 2.27 years, with the hope that the crack can be detected in subsequent maintenance procedures. Finally, an appropriate safety margin was suggested which provides a basis for the life prediction and durability assessment of brake unit brackets of high-speed railways.
文摘Cadmium-induced DNA degradation in gill cells of the scallop Mizuhopectenyessoensis was assessed using the comet assay (single-cell gel electrophoresis). Accumulation of highly toxic cadmium in the gill cells of bivalve is accompanied by the damage of the cell genome revealed as DNA migration in the comet assay. The main mechanisms of Cd effects on the integrity of the DNA structure are discussed.
基金jointly sponsored by the Scientific Research Fund of Engineering Mechanics,China Earthquake Administration(2016A05)the grant from the National Natural Science Foundation of China(51478441)
文摘The damage to the masonry-infilled reinforced concrete( RC) frame buildings in Charikot,the capital city of Dolakha district in Nepal,during the 2015 April-to-May Nepal earthquake sequence is reported. Most of these buildings were built by the owners with little governmental inspections regarding their structural design or constructional quality. Although they generally performed better than other structural systems such as stone-masonry houses,the RC frames sustained extensive damage ranging from cracking of infill to complete collapse. In particular,eight of the 72 inspected RC frames alongside an uphill street collapsed in different ways. In addition to the un-engineered nature of these RC frames,their collapse could also be attributed to multiple technical reasons including the effect of terrain, the pounding between adjacent buildings and the accumulative damage in the earthquake sequence.
文摘Seismic earthquakes are a real danger for the construction evolution of high rise buildings.The rate of earthquakes around the world is noteworthy in a wide range of construction areas.In this study,we present the dynamic behavior of a high-rise RC building with dynamic isolators(lead-rubber-bearing),in comparison with a traditional shear wall system of the same building.Seismic isolation has been introduced in building construction to increase the structural stability and to protect the non-structural components against the damaging effects of an earthquake.In order to clarify the influence of incorporating lead rubber bearing isolators in the seismic response and in reducing seismic damages;a comparative study is performed between a fixed base system(shear wall system)and an isolated base system(Lead Rubber Bearing)on an irregular high rise reinforced concrete(RC)building located in Beirut consisting of 48 storeys almost asymmetric orthogonally.For this purpose,a non-linear analysis of a real earthquake acceleration record(EI Centro seismic signal)is conducted,so that the mode shapes,the damping ratio and the natural frequencies of the two models are obtained using ETABS software.The results prove a substantial elongation of the building period,as well as a reduction in the building displacement,the roof acceleration,the inter-storey drift ratio and the base shear force of isolated building relative to fixed-base building.This study proves that this technology is applicable to high rise buildings with acceptable results.