Gears are pivotal in mechanical drives,and gear contact analysis is a typically difficult problem to solve.Emerging isogeometric analysis(IGA)methods have developed new ideas to solve this problem.In this paper,a thre...Gears are pivotal in mechanical drives,and gear contact analysis is a typically difficult problem to solve.Emerging isogeometric analysis(IGA)methods have developed new ideas to solve this problem.In this paper,a threedimensional body parametric gear model of IGA is established,and a theoretical formula is derived to realize single-tooth contact analysis.Results were benchmarked against those obtained from commercial software utilizing the finite element analysis(FEA)method to validate the accuracy of our approach.Our findings indicate that the IGA-based contact algorithmsuccessfullymet theHertz contact test.When juxtaposed with the FEA approach,the IGAmethod demonstrated fewer node degrees of freedomand reduced computational units,all whilemaintaining comparable accuracy.Notably,the IGA method appeared to exhibit consistency in analysis accuracy irrespective of computational unit density,and also significantlymitigated non-physical oscillations in contact stress across the tooth width.This underscores the prowess of IGA in contact analysis.In conclusion,IGA emerges as a potent tool for addressing contact analysis challenges and holds significant promise for 3D gear modeling,simulation,and optimization of various mechanical components.展开更多
Beveloid gears,also known as conical gears,gain more and more importance in industry practice due to their abilities for power transmission between parallel,intersected and crossed axis.However,this type of gearing wi...Beveloid gears,also known as conical gears,gain more and more importance in industry practice due to their abilities for power transmission between parallel,intersected and crossed axis.However,this type of gearing with crossed axes has no common plane of action which results in a point contact and low tooth durability.Therefore,a geometry design approach assuming line contact is developed to analyze the tooth engagement process of crossed beveloid gears with small shaft angle for marine transmission applications.The loaded gear tooth contact behavior is simulated by applying a quasi-static analysis to study the effects of gearing parameters on mesh characteristics.Using the proposed method,a series of sensitivity analyses to examine the effects of critical gearing parameters such as shaft angle,cone angle,helix angle and profile-shift coefficient on the theoretical gear mesh is performed.The parametric analysis of pitch cone design shows that the dominant design parameters represented by the angle between the first principle directions(FPD) and normal angular factor are more sensitive to the shaft and cone angles than they are to the helix angle.The theoretical contact path is highly sensitive to the profile-shift coefficient,which is determined from the theoretical tooth contact analysis.The FPD angle is found to change the distribution of contact pattern,contact pressure and root stress as well as the translational transmission error and the variation of the mesh stiffness significantly.The contact pattern is clearly different between the drive and coast sides due to different designed FPD angles.Finally,a practical experimental setup for marine transmission is performed and tooth bearing test is conducted to demonstrate the proposed design procedure.The experimental result compared well with the simulation.Results of this study yield a better understanding of the geometry design and loaded gear mesh characteristics for crossed beveloid gears used in marine transmission.展开更多
Ceramics are good alternative to metal as bearing couple materials because of their better wear resistance. A Finite Element(FE) study was performed to investigate the contact mechanics and stress distribution of Cera...Ceramics are good alternative to metal as bearing couple materials because of their better wear resistance. A Finite Element(FE) study was performed to investigate the contact mechanics and stress distribution of Ceramic-on-Ceramic (COC) hip resurfacingprostheses. It was focused in particular on a parametric study to examine the effects of radial clearance, loading,alumina coating on the implants, bone quality, and fixation of cup-bone interface. It was found that a reduction in the radialclearance had the most significant effect on the predicted contact pressure distribution among all of the parameters considered inthis study. It was determined that there was a significant influence of non-metallic materials, such as the bone underneath thebearing components, on the predicted contact mechanics. Stress shielding within the bone tissue was found to be a major concernwhen regarding the use of ceramic as an alternative to metallic resurfacing prostheses. Therefore, using alumina implantswith a metal backing was found to be the best design for ceramic resurfacing prostheses in this study. The loading, bone quality,and acetabular cup fixation conditions were found to have only minor effects on the predicted contact pressure distribution alongthe bearing surfaces.展开更多
To investigate the cage stability of high-speed oil-lubricated angular contact ball bearings, a dynamic model of cages is developed on the basis of Gupta’s and Meeks’ work. The model can simulate the cage motion und...To investigate the cage stability of high-speed oil-lubricated angular contact ball bearings, a dynamic model of cages is developed on the basis of Gupta’s and Meeks’ work. The model can simulate the cage motion under oil lubrication with all six degrees of freedom. Particularly, the model introduces oil-film damping and hysteresis damping, and deals with the collision contact as imperfect elastic contact. In addition, the effects of inner ring rotational speed, the ratio of pocket clearance to guiding clearance and applied load on the cage stability are investigated by simulating the cage motion with the model. The results can provide a theoretical basis for the design of ball bearing parameters.展开更多
The contact stiffness and the error analysis have an important effect on the manufacture and the optimization of Ball Linear Guide Feed Unit( BLGFU). In order to analyze the contact stiffness and linear errors or angl...The contact stiffness and the error analysis have an important effect on the manufacture and the optimization of Ball Linear Guide Feed Unit( BLGFU). In order to analyze the contact stiffness and linear errors or angle errors of BLGFU,in this paper,the contact stress and deformation mechanics between the ball and rail is analyzed. Based on Hertz theory of contact and theory of the multi-body system,a model of the contact stiffness considering the changes in contact angle is established. With the increasing of the external load,the varying trend of the contact deformation can be obtained. Therefore, the motion accuracy degradation of the BLGFU can be analyzed. By using a special experimental device and test system of the rolling linear guide worktable,the horizontal contact stiffness and the vertical linear stiffness are obtained,respectively. By comparing the contact stiffness of the experiment dates and the simulation results,the variation tendency of two curves is consisted and the difference between the measured values and the theoretical values is less than 18%. It is obvious that the model of the contact stiffness considering changes of contact angle has accuracy and feasibility. Thus,while external force point locating at different positions; the contact stiffness and the accuracy analysis of the BLGFU are proved validity by simulations.展开更多
The mathematical model of conical involute gears is developed based on the theory of gearing and the generating mechanism. Tooth contact analysis (TCA) is performed to examine the meshing and bearing contact of the ...The mathematical model of conical involute gears is developed based on the theory of gearing and the generating mechanism. Tooth contact analysis (TCA) is performed to examine the meshing and bearing contact of the conical involute gear pairs with intersected and crossed axes. In addition, the principal directions and curvatures of the gear surfaces are investigated and the contact ellipses of the mating tooth surfaces are also studied. Finally, the numerical illustrative examples are provided to demonstrate the computational results, test gears are made for tooth-bearing tests, and the conclusion is verified that the theory has the applicability.展开更多
In this paper,an efficien formulation based on the Lagrangian method is presented to investigate the contact–impact problems of f exible multi-body systems.Generally,the penalty method and the Hertz contact law are t...In this paper,an efficien formulation based on the Lagrangian method is presented to investigate the contact–impact problems of f exible multi-body systems.Generally,the penalty method and the Hertz contact law are the most commonly used methods in engineering applications.However,these methods are highly dependent on various non-physical parameters,which have great effects on the simulation results.Moreover,a tremendous number of degrees of freedom in the contact–impact problems will influenc thenumericalefficien ysignificantl.Withtheconsideration of these two problems,a formulation combining the component mode synthesis method and the Lagrangian method is presented to investigate the contact–impact problems in fl xible multi-body system numerically.Meanwhile,the finit element meshing laws of the contact bodies will be studied preliminarily.A numerical example with experimental verificatio will certify the reliability of the presented formulationincontact–impactanalysis.Furthermore,aseries of numerical investigations explain how great the influenc of the finit element meshing has on the simulation results.Finally the limitations of the element size in different regions are summarized to satisfy both the accuracy and efficien y.展开更多
Contact glow discharge electrolysis is a non-Faradaic electrochemical process with an abnormal relationship between the current and voltage. Hydroxyl radicals, hydrogen radicals and hydrogen peroxide can be produced u...Contact glow discharge electrolysis is a non-Faradaic electrochemical process with an abnormal relationship between the current and voltage. Hydroxyl radicals, hydrogen radicals and hydrogen peroxide can be produced under the glow discharge, which are often used to degrade organic contaminants in aqueous solution. In this study, with 4-nitrophenol taken as an example of contaminants and tert-butanol as a scavenger of hydroxyl radicals, the role of energetic species in degrading organic compounds was examined in detail. Moreover, the effects of the applied voltage, solution conductivity and pH on the formation of three energetic species were also observed. The formation rate constants of the three energetic species were calculated based on the experimental data.展开更多
A discussion about the bifurcation and non-uniqueness of solutions in theanalysis of thermo-mechanical contact problems with initial gap is given. Without loss ofgenerality, a mechanical contact problem coupled with s...A discussion about the bifurcation and non-uniqueness of solutions in theanalysis of thermo-mechanical contact problems with initial gap is given. Without loss ofgenerality, a mechanical contact problem coupled with steady heat transfer is studied and an exampleof non-uniqueness of solutions caused by the thermo-mechanical mechanism is presented. Theimportant work is that the non-uniqueness of solutions, which is different from that found in theanalysis of the traditional frictional contact problems, is studied in detail. The possibleoscillation and non-convergence problems in the iteration process of the numerical computation arediscussed, and an enhanced algorithm is put forward to overcome the difficulties.展开更多
Serious accidents of mine hoists caused by high-speed sliding between friction lining and wire rope are often seen in coal mines.In order to solve this problem,we analyzed the contact characteristics between friction ...Serious accidents of mine hoists caused by high-speed sliding between friction lining and wire rope are often seen in coal mines.In order to solve this problem,we analyzed the contact characteristics between friction lining and wire rope.Then we carried out a dynamic mechanical analysis(DMA) to explain the change in mechanical properties of the friction lining as function of temperature and load frequency and found that temperature has a stronger effect on the mechanical properties than the frequency.We used multiple regression analysis to obtain the thermoviscoelastic constitutive relations of the friction lining.As well we derived the analytic solution for the thermoviscoelastic contact radius and pressure by combining the theory of viscoelastic contact mechanics with thermoviscoelastic constitutive relations.展开更多
A novel spiral non-circular bevel gear that could be applied to variable-speed driving in intersecting axes was proposed by combining the design principles of non-circular bevel gears and the manufacturing principles ...A novel spiral non-circular bevel gear that could be applied to variable-speed driving in intersecting axes was proposed by combining the design principles of non-circular bevel gears and the manufacturing principles of face-milling spiral bevel gears.Unlike straight non-circular bevel gears,spiral non-circular bevel gears have numerous advantages,such as a high contact ratio,high intensity,good dynamic performance,and an adjustable contact region.In addition,while manufacturing straight non-circular bevel gears is difficult,spiral non-circular bevel gears can be efficiently and precisely fabricated with a 6-axis bevel gear cutting machine.First,the generating principles of spiral non-circular bevel gears were introduced.Next,a mathematical model,including a generating tooth profile,tooth spiral,pressure angle,and generated tooth profile for this gear type was established.Then the precision of the model was verified by a tooth contact analysis using FEA,and the contact patterns and stress distributions of the spiral non-circular bevel gears were investigated.展开更多
Pantograph-catenary contact force provides the main basis for evaluation of current quality collection; however,the pantograph-catenary contact force is largely affected by the catenary irregularities.To analyze the c...Pantograph-catenary contact force provides the main basis for evaluation of current quality collection; however,the pantograph-catenary contact force is largely affected by the catenary irregularities.To analyze the correlated relationship between catenary irregularities and pantograph-catenary contact force,a method based on nonlinear auto-regressive with exogenous input(NARX) neural networks was developed.First,to collect the test data of catenary irregularities and contact force,the pantograph/catenary dynamics model was established and dynamic simulation was conducted using MATLAB/Simulink.Second,catenary irregularities were used as the input to NARX neural network and the contact force was determined as output of the NARX neural network,in which the neural network was trained by an improved training mechanism based on the regularization algorithm.The simulation results show that the testing error and correlation coefficient are 0.1100 and 0.8029,respectively,and the prediction accuracy is satisfactory.And the comparisons with other algorithms indicate the validity and superiority of the proposed approach.展开更多
In this research,we proposed a non-linear SIS model to study the effect of variable interaction rates and non-emigrating population of the human habitat on the spread of bacteria-infected diseases.It assumed that the ...In this research,we proposed a non-linear SIS model to study the effect of variable interaction rates and non-emigrating population of the human habitat on the spread of bacteria-infected diseases.It assumed that the growth of bacteria is logistic with an intrinsic growth rate is a linear function of infectives.In this model,we assume that contact rates between susceptibles and infectives as well as between susceptibles and bacteria depend on the density of the non-emigrating population and the total population of the habitat.The stability theory has been analyzed to analyzed to study the crucial role played by bacteria in the increased spread of an infectious disease.It is shown that as the density of non-emigrating population increases,the spread of an infectious disease increases.It is shown further that as the emigration increases,the spread of the disease decreases in both the cases of contact mentioned above rates,but this spread increases as these contact rates increase.It suggested that the control of bacteria in the human habitat is very useful to decrease the spread of an infectious disease.These results are confirmed by numerical simulation.展开更多
The evolution of leakage is studied using detailed contact finite element analysis. The distribution of stress at the gasket is analyzed using a contact condition based on slide-line elements using ABAQUS, a commercia...The evolution of leakage is studied using detailed contact finite element analysis. The distribution of stress at the gasket is analyzed using a contact condition based on slide-line elements using ABAQUS, a commercial finite element code, Slide-line elements also take into account pressure penetration as contact that is lost between flange and gasket. Results are presented for a particular flange, a raised face flange sealed by a mild steel gasket. A comparison of the results from the gasket contact analysis and the contact conditions specified by the ASME Boiler and Pressure Vessel Code, Sections VIII, Division 1 shows that the conditions specified in the ASME Code predict leakage relatively accurately.展开更多
BACKGROUND The four components that make up the current dual-mobility artificial hip joint design are the femoral head,the inner liner,the outer liner as a metal cover to prevent wear,and the acetabular cup.The acetab...BACKGROUND The four components that make up the current dual-mobility artificial hip joint design are the femoral head,the inner liner,the outer liner as a metal cover to prevent wear,and the acetabular cup.The acetabular cup and the outer liner were constructed of 316L stainless steel.At the same time,the inner liner was made of ultra-high-molecular-weight polyethylene(UHMWPE).As this new dual-mobility artificial hip joint has not been researched extensively,more tribological research is needed to predict wear.The thickness of the inner liner is a significant component to consider when calculating the contact pressure.AIM To make use of finite element analysis to gain a better understanding of the contact behavior in various inner liner thicknesses on a new model of a dual-mobility artificial hip joint,with the ultimate objective of determining the inner liner thickness that was most suitable for this particular type of dual-mobility artificial hip joint.METHODS In this study,the size of the femoral head was compared between two diameters(28 mm and 36 mm)and eight inner liner thicknesses ranging from 5 mm to 12 mm.Using the finite element method,the contact parameters,including the maximum contact pressure and contact area,have been evaluated in light of the Hertzian contact theory.The simulation was performed statically with dissipated energy and asymmetric behavior.The types of interaction were surface-to-surface contact and normal contact behavior.RESULTS The maximum contact pressures in the inner liner(UHMWPE)at a head diameter of 28 mm and 36 mm are between 3.7-13.5 MPa and 2.7-10.4 MPa,respectively.The maximum von Mises of the inner liner,outer liner,and acetabular cup are 2.4–11.4 MPa,15.7–44.3 MPa,and 3.7–12.6 MPa,respectively,for 28 mm head.Then the maximum von Mises stresses of the 36 mm head are 1.9-8.9 MPa for the inner liner,9.9-32.8 MPa for the outer liner,and 2.6-9.9 MPa for the acetabular cup.A head with a diameter of 28 mm should have an inner liner with a thickness of 12 mm.Whereas the head diameter was 36 mm,an inner liner thickness of 8 mm was suitable.CONCLUSION The contact pressures and von Mises stresses generated during this research can potentially be exploited in estimating the wear of dual-mobility artificial hip joints in general.Contact pressure and von Mises stress reduce with an increasing head diameter and inner liner’s thickness.Present findings would become one of the references for orthopedic surgery for choosing suitable bearing geometric parameter of hip implant.展开更多
Boundary element compliance matrix (BEM) method to deal with 3D elastic frictional contact problem was presented, and its calculation method and convergence criteria were discussed. It has the advantages of both bound...Boundary element compliance matrix (BEM) method to deal with 3D elastic frictional contact problem was presented, and its calculation method and convergence criteria were discussed. It has the advantages of both boundary element method and compliance matrix methods: small number of inputting data, simple and convenient model, precise solution, short calculating time and requirements for a small quantity of computer memory. In comparison to the other BEM with friction problems, we obtain more precise solution and less iteration times. The effect of friction coefficient on contact area. contace state, and relative displacement, normal and tangential stress was analyzed by two examples. And because of the quickness of calculation of program and efficient method, we visualize the result in virtual reality (VR) environment. We grant the real time of VR and provide more immersion to users who ware the VR device.展开更多
A simple interface element for analyzing contact friction problems is developed. Taking nodal displacements and contact stresses as unknowns, this element can simulate frictional slippage, decoupling and re-bonding of...A simple interface element for analyzing contact friction problems is developed. Taking nodal displacements and contact stresses as unknowns, this element can simulate frictional slippage, decoupling and re-bonding of two bodies initially mating or having gaps at a common interface. The method is based on the Finite Element Method and load incremental theory. The geometric and static constraint conditions on contact surfaces are treated as additional conditions and are included in stiffness equations. This simple element has the advantages of easy implementation into standard finite element programs and fast speed for convergence as well as high accuracy for stress distribution in interface. Undesirable stress oscillations are also investigated whenever large stress gradients exist over the contact surfaces. Exact integration or the conventional Gauss integration scheme used to evaluate the interpolation function matrix of the interface element is found to be the source of the oscillations. Eigenmode analysis demonstrates that the stress behavior of an interface element can be improved by using the Newton-Cotes integration scheme. Finally, the test example of a strip footing problem is presented.展开更多
The spatial and temporal evolution of real contact area of contact interface with loads is a challenge.It is generally believed that there is a positive linear correlation between real contact area and normal load.How...The spatial and temporal evolution of real contact area of contact interface with loads is a challenge.It is generally believed that there is a positive linear correlation between real contact area and normal load.However,with the development of measuring instruments and methods,some scholars have found that the growth rate of real contact area will slow down with the increase of normal load under certain conditions,such as large-scale interface contact with small roughness surface,which is called the nonlinear phenomenon of real contact area.At present,there is no unified conclusion on the explanation of this phenomenon.We set up an experimental apparatus based on the total reflection principle to verify this phenomenon and analyze its mechanism.An image processing method is proposed,which can be used to quantitative analysis micro contact behaviors on macro contact phenomenon.The weighted superposition method is used to identify micro contact spots,to calculate the real contact area,and the color superimposed image is used to identify micro contact behaviors.Based on this method,the spatiotemporal evolution mechanism of real contact area nonlinear phenomena is quantitatively analyzed.Furthermore,the influence of nonlinear phenomenon of real contact area on the whole loading and unloading process is analyzed experimentally.It is found that the effects of fluid between contact interface,normal load amplitude and initial contact state on contact behavior cannot be ignored in large-scale interface contact with small roughness surface.展开更多
Background: Non-linear signal analysis has proven to be a technique that is capable of revealing qualitative and quan- titative differentiations between different dynamical systems (biological or otherwise). In the pr...Background: Non-linear signal analysis has proven to be a technique that is capable of revealing qualitative and quan- titative differentiations between different dynamical systems (biological or otherwise). In the present work it has been demonstrated that this capability reveals quantitative differences in the Magnetoencephalograms (MEG) received from patients with Idiopathic Generalized Epilepsy (IGE) and from healthy volunteers. Method: We present MEG record- ings of 10 epileptic patients with IGE and the corresponding ones from 10 healthy volunteers. A 122-channel SQUID biomagnetometer in an electromagnetically shielded room was used to record the MEG signals and the Grassber- ger-Procaccia method for the estimation of the correlation dimension was applied in the phase space reconstruction of the recorded signal from each patient. Results: The aforementioned analysis demonstrates the existence of spatially diffused low dimensionality in the MEG signals of patients with IGE. Conclusion: The obtained results provide support for the hypothesis that low dimensionality in MEG signals is linked to functional brain pathogeny.展开更多
This article proposes a framework, called BP-M* which includes: 1) a methodology to analyze, engineer, restructure and implement business processes, and 2) a process model that extends the process diagram with the spe...This article proposes a framework, called BP-M* which includes: 1) a methodology to analyze, engineer, restructure and implement business processes, and 2) a process model that extends the process diagram with the specification of resources that execute the process activities, allocation policies, schedules, times of activities, management of queues in input to the activities and workloads so that the same model can be simulated by a discrete event simulator. The BP-M* framework has been applied to a real case study, a public Contact Center which provides different typologies of answers to users’ requests. The simulation allows to study different system operating scenarios (“What-If” analysis) providing useful information for analysts to evaluate restructuring actions.展开更多
基金support provided by the National Nature Science Foundation of China (Grant Nos.52075340,51875360)Project of Science and Technology Commission of Shanghai Municipality (No.19060502300).
文摘Gears are pivotal in mechanical drives,and gear contact analysis is a typically difficult problem to solve.Emerging isogeometric analysis(IGA)methods have developed new ideas to solve this problem.In this paper,a threedimensional body parametric gear model of IGA is established,and a theoretical formula is derived to realize single-tooth contact analysis.Results were benchmarked against those obtained from commercial software utilizing the finite element analysis(FEA)method to validate the accuracy of our approach.Our findings indicate that the IGA-based contact algorithmsuccessfullymet theHertz contact test.When juxtaposed with the FEA approach,the IGAmethod demonstrated fewer node degrees of freedomand reduced computational units,all whilemaintaining comparable accuracy.Notably,the IGA method appeared to exhibit consistency in analysis accuracy irrespective of computational unit density,and also significantlymitigated non-physical oscillations in contact stress across the tooth width.This underscores the prowess of IGA in contact analysis.In conclusion,IGA emerges as a potent tool for addressing contact analysis challenges and holds significant promise for 3D gear modeling,simulation,and optimization of various mechanical components.
基金supported by Fundamental Research Funds for Central Universities of China (Grant No. CDJXS11111138,Key Projects in the National Science & Technology Pillar Program during the 11th Five-Year Plan Period of China(Grant No. 2011BAF09B07)National Natural Science Foundatlon of China(Grant No. 51175523)
文摘Beveloid gears,also known as conical gears,gain more and more importance in industry practice due to their abilities for power transmission between parallel,intersected and crossed axis.However,this type of gearing with crossed axes has no common plane of action which results in a point contact and low tooth durability.Therefore,a geometry design approach assuming line contact is developed to analyze the tooth engagement process of crossed beveloid gears with small shaft angle for marine transmission applications.The loaded gear tooth contact behavior is simulated by applying a quasi-static analysis to study the effects of gearing parameters on mesh characteristics.Using the proposed method,a series of sensitivity analyses to examine the effects of critical gearing parameters such as shaft angle,cone angle,helix angle and profile-shift coefficient on the theoretical gear mesh is performed.The parametric analysis of pitch cone design shows that the dominant design parameters represented by the angle between the first principle directions(FPD) and normal angular factor are more sensitive to the shaft and cone angles than they are to the helix angle.The theoretical contact path is highly sensitive to the profile-shift coefficient,which is determined from the theoretical tooth contact analysis.The FPD angle is found to change the distribution of contact pattern,contact pressure and root stress as well as the translational transmission error and the variation of the mesh stiffness significantly.The contact pattern is clearly different between the drive and coast sides due to different designed FPD angles.Finally,a practical experimental setup for marine transmission is performed and tooth bearing test is conducted to demonstrate the proposed design procedure.The experimental result compared well with the simulation.Results of this study yield a better understanding of the geometry design and loaded gear mesh characteristics for crossed beveloid gears used in marine transmission.
文摘Ceramics are good alternative to metal as bearing couple materials because of their better wear resistance. A Finite Element(FE) study was performed to investigate the contact mechanics and stress distribution of Ceramic-on-Ceramic (COC) hip resurfacingprostheses. It was focused in particular on a parametric study to examine the effects of radial clearance, loading,alumina coating on the implants, bone quality, and fixation of cup-bone interface. It was found that a reduction in the radialclearance had the most significant effect on the predicted contact pressure distribution among all of the parameters considered inthis study. It was determined that there was a significant influence of non-metallic materials, such as the bone underneath thebearing components, on the predicted contact mechanics. Stress shielding within the bone tissue was found to be a major concernwhen regarding the use of ceramic as an alternative to metallic resurfacing prostheses. Therefore, using alumina implantswith a metal backing was found to be the best design for ceramic resurfacing prostheses in this study. The loading, bone quality,and acetabular cup fixation conditions were found to have only minor effects on the predicted contact pressure distribution alongthe bearing surfaces.
基金Supported by National Key Technology Research and Development Program of China during the 11th Five-Year Plan Period (No. JPPT-115-189)National Natural Science Foundation of China (No. 50975033)
文摘To investigate the cage stability of high-speed oil-lubricated angular contact ball bearings, a dynamic model of cages is developed on the basis of Gupta’s and Meeks’ work. The model can simulate the cage motion under oil lubrication with all six degrees of freedom. Particularly, the model introduces oil-film damping and hysteresis damping, and deals with the collision contact as imperfect elastic contact. In addition, the effects of inner ring rotational speed, the ratio of pocket clearance to guiding clearance and applied load on the cage stability are investigated by simulating the cage motion with the model. The results can provide a theoretical basis for the design of ball bearing parameters.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.51505012 and 51575014)the Natural Science Foundation of Beijing(Grant No.KZ201410005010)+2 种基金the Important National Science&Technology Specific Projects of China(Grant No.2012ZX04010021-001-004)the China Postdoctoral Science Foundation Funded Project(Grant No.2016M591033)the Beijing Postdoctoral Research Foundation(Grant No.2015ZZ-13)
文摘The contact stiffness and the error analysis have an important effect on the manufacture and the optimization of Ball Linear Guide Feed Unit( BLGFU). In order to analyze the contact stiffness and linear errors or angle errors of BLGFU,in this paper,the contact stress and deformation mechanics between the ball and rail is analyzed. Based on Hertz theory of contact and theory of the multi-body system,a model of the contact stiffness considering the changes in contact angle is established. With the increasing of the external load,the varying trend of the contact deformation can be obtained. Therefore, the motion accuracy degradation of the BLGFU can be analyzed. By using a special experimental device and test system of the rolling linear guide worktable,the horizontal contact stiffness and the vertical linear stiffness are obtained,respectively. By comparing the contact stiffness of the experiment dates and the simulation results,the variation tendency of two curves is consisted and the difference between the measured values and the theoretical values is less than 18%. It is obvious that the model of the contact stiffness considering changes of contact angle has accuracy and feasibility. Thus,while external force point locating at different positions; the contact stiffness and the accuracy analysis of the BLGFU are proved validity by simulations.
文摘The mathematical model of conical involute gears is developed based on the theory of gearing and the generating mechanism. Tooth contact analysis (TCA) is performed to examine the meshing and bearing contact of the conical involute gear pairs with intersected and crossed axes. In addition, the principal directions and curvatures of the gear surfaces are investigated and the contact ellipses of the mating tooth surfaces are also studied. Finally, the numerical illustrative examples are provided to demonstrate the computational results, test gears are made for tooth-bearing tests, and the conclusion is verified that the theory has the applicability.
基金supported by the National Science Foundation of China (Grants 11132007,11272203)
文摘In this paper,an efficien formulation based on the Lagrangian method is presented to investigate the contact–impact problems of f exible multi-body systems.Generally,the penalty method and the Hertz contact law are the most commonly used methods in engineering applications.However,these methods are highly dependent on various non-physical parameters,which have great effects on the simulation results.Moreover,a tremendous number of degrees of freedom in the contact–impact problems will influenc thenumericalefficien ysignificantl.Withtheconsideration of these two problems,a formulation combining the component mode synthesis method and the Lagrangian method is presented to investigate the contact–impact problems in fl xible multi-body system numerically.Meanwhile,the finit element meshing laws of the contact bodies will be studied preliminarily.A numerical example with experimental verificatio will certify the reliability of the presented formulationincontact–impactanalysis.Furthermore,aseries of numerical investigations explain how great the influenc of the finit element meshing has on the simulation results.Finally the limitations of the element size in different regions are summarized to satisfy both the accuracy and efficien y.
基金the Key Project of Science and Technology of Education Ministry(00250)the Natural Science Foundation of Gansu Province(3ZS041-A25-028)+1 种基金the Invention Project of Science & Technology of NWNU(KJCXGC-01)Gansu Key Lab of Polymer Materials,China.
文摘Contact glow discharge electrolysis is a non-Faradaic electrochemical process with an abnormal relationship between the current and voltage. Hydroxyl radicals, hydrogen radicals and hydrogen peroxide can be produced under the glow discharge, which are often used to degrade organic contaminants in aqueous solution. In this study, with 4-nitrophenol taken as an example of contaminants and tert-butanol as a scavenger of hydroxyl radicals, the role of energetic species in degrading organic compounds was examined in detail. Moreover, the effects of the applied voltage, solution conductivity and pH on the formation of three energetic species were also observed. The formation rate constants of the three energetic species were calculated based on the experimental data.
基金the National Natural Science Foundation of China (Nos.50178016,10225212 and 19872016)the National Key Basic Research Special Foundation (No.G1999032805)the Foundation for University Key Teacher by the Ministry of Education
文摘A discussion about the bifurcation and non-uniqueness of solutions in theanalysis of thermo-mechanical contact problems with initial gap is given. Without loss ofgenerality, a mechanical contact problem coupled with steady heat transfer is studied and an exampleof non-uniqueness of solutions caused by the thermo-mechanical mechanism is presented. Theimportant work is that the non-uniqueness of solutions, which is different from that found in theanalysis of the traditional frictional contact problems, is studied in detail. The possibleoscillation and non-convergence problems in the iteration process of the numerical computation arediscussed, and an enhanced algorithm is put forward to overcome the difficulties.
基金Projects 50875253 supported by the National Natural Science Foundation of China20060290505 by the Research Fund for the Doctoral Program of Higher Education of China+2 种基金107054 by the Key Project of Ministry of Education of ChinaBK2008127 by the Natural Science Foundation of Jiangsu ProvinceCX08B_042Z by the Scientific Innovation Program for Postgraduates in Colleges and Universities of Jiangsu Province
文摘Serious accidents of mine hoists caused by high-speed sliding between friction lining and wire rope are often seen in coal mines.In order to solve this problem,we analyzed the contact characteristics between friction lining and wire rope.Then we carried out a dynamic mechanical analysis(DMA) to explain the change in mechanical properties of the friction lining as function of temperature and load frequency and found that temperature has a stronger effect on the mechanical properties than the frequency.We used multiple regression analysis to obtain the thermoviscoelastic constitutive relations of the friction lining.As well we derived the analytic solution for the thermoviscoelastic contact radius and pressure by combining the theory of viscoelastic contact mechanics with thermoviscoelastic constitutive relations.
基金Project(52175361)supported by the National Natural Science Foundation of ChinaProject(2019 CFA 041)supported by the Natural Science Foundation of Hubei Province,ChinaProject(WUT:202407002)supported by the Fundamental Research Funds for the Central Universities,China。
文摘A novel spiral non-circular bevel gear that could be applied to variable-speed driving in intersecting axes was proposed by combining the design principles of non-circular bevel gears and the manufacturing principles of face-milling spiral bevel gears.Unlike straight non-circular bevel gears,spiral non-circular bevel gears have numerous advantages,such as a high contact ratio,high intensity,good dynamic performance,and an adjustable contact region.In addition,while manufacturing straight non-circular bevel gears is difficult,spiral non-circular bevel gears can be efficiently and precisely fabricated with a 6-axis bevel gear cutting machine.First,the generating principles of spiral non-circular bevel gears were introduced.Next,a mathematical model,including a generating tooth profile,tooth spiral,pressure angle,and generated tooth profile for this gear type was established.Then the precision of the model was verified by a tooth contact analysis using FEA,and the contact patterns and stress distributions of the spiral non-circular bevel gears were investigated.
基金Project(20120009110035)supported by Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(2011BAG01B05)supported by National Key Technology Research and Development Program of ChinaProject(2011AA110501)supported by National High-tech Research and Development Program of China
文摘Pantograph-catenary contact force provides the main basis for evaluation of current quality collection; however,the pantograph-catenary contact force is largely affected by the catenary irregularities.To analyze the correlated relationship between catenary irregularities and pantograph-catenary contact force,a method based on nonlinear auto-regressive with exogenous input(NARX) neural networks was developed.First,to collect the test data of catenary irregularities and contact force,the pantograph/catenary dynamics model was established and dynamic simulation was conducted using MATLAB/Simulink.Second,catenary irregularities were used as the input to NARX neural network and the contact force was determined as output of the NARX neural network,in which the neural network was trained by an improved training mechanism based on the regularization algorithm.The simulation results show that the testing error and correlation coefficient are 0.1100 and 0.8029,respectively,and the prediction accuracy is satisfactory.And the comparisons with other algorithms indicate the validity and superiority of the proposed approach.
基金Deanship of Scientific Research at Majmaah University for supporting this work under the Project No.R-2021-8.
文摘In this research,we proposed a non-linear SIS model to study the effect of variable interaction rates and non-emigrating population of the human habitat on the spread of bacteria-infected diseases.It assumed that the growth of bacteria is logistic with an intrinsic growth rate is a linear function of infectives.In this model,we assume that contact rates between susceptibles and infectives as well as between susceptibles and bacteria depend on the density of the non-emigrating population and the total population of the habitat.The stability theory has been analyzed to analyzed to study the crucial role played by bacteria in the increased spread of an infectious disease.It is shown that as the density of non-emigrating population increases,the spread of an infectious disease increases.It is shown further that as the emigration increases,the spread of the disease decreases in both the cases of contact mentioned above rates,but this spread increases as these contact rates increase.It suggested that the control of bacteria in the human habitat is very useful to decrease the spread of an infectious disease.These results are confirmed by numerical simulation.
文摘The evolution of leakage is studied using detailed contact finite element analysis. The distribution of stress at the gasket is analyzed using a contact condition based on slide-line elements using ABAQUS, a commercial finite element code, Slide-line elements also take into account pressure penetration as contact that is lost between flange and gasket. Results are presented for a particular flange, a raised face flange sealed by a mild steel gasket. A comparison of the results from the gasket contact analysis and the contact conditions specified by the ASME Boiler and Pressure Vessel Code, Sections VIII, Division 1 shows that the conditions specified in the ASME Code predict leakage relatively accurately.
基金Supported by World Class Research Universitas Diponegoro,No.118-23/UN7.6.1/PP/2021Penelitian Fundamental–Reguler,No.449A-32/UN7.D2/PP/VI/2023.
文摘BACKGROUND The four components that make up the current dual-mobility artificial hip joint design are the femoral head,the inner liner,the outer liner as a metal cover to prevent wear,and the acetabular cup.The acetabular cup and the outer liner were constructed of 316L stainless steel.At the same time,the inner liner was made of ultra-high-molecular-weight polyethylene(UHMWPE).As this new dual-mobility artificial hip joint has not been researched extensively,more tribological research is needed to predict wear.The thickness of the inner liner is a significant component to consider when calculating the contact pressure.AIM To make use of finite element analysis to gain a better understanding of the contact behavior in various inner liner thicknesses on a new model of a dual-mobility artificial hip joint,with the ultimate objective of determining the inner liner thickness that was most suitable for this particular type of dual-mobility artificial hip joint.METHODS In this study,the size of the femoral head was compared between two diameters(28 mm and 36 mm)and eight inner liner thicknesses ranging from 5 mm to 12 mm.Using the finite element method,the contact parameters,including the maximum contact pressure and contact area,have been evaluated in light of the Hertzian contact theory.The simulation was performed statically with dissipated energy and asymmetric behavior.The types of interaction were surface-to-surface contact and normal contact behavior.RESULTS The maximum contact pressures in the inner liner(UHMWPE)at a head diameter of 28 mm and 36 mm are between 3.7-13.5 MPa and 2.7-10.4 MPa,respectively.The maximum von Mises of the inner liner,outer liner,and acetabular cup are 2.4–11.4 MPa,15.7–44.3 MPa,and 3.7–12.6 MPa,respectively,for 28 mm head.Then the maximum von Mises stresses of the 36 mm head are 1.9-8.9 MPa for the inner liner,9.9-32.8 MPa for the outer liner,and 2.6-9.9 MPa for the acetabular cup.A head with a diameter of 28 mm should have an inner liner with a thickness of 12 mm.Whereas the head diameter was 36 mm,an inner liner thickness of 8 mm was suitable.CONCLUSION The contact pressures and von Mises stresses generated during this research can potentially be exploited in estimating the wear of dual-mobility artificial hip joints in general.Contact pressure and von Mises stress reduce with an increasing head diameter and inner liner’s thickness.Present findings would become one of the references for orthopedic surgery for choosing suitable bearing geometric parameter of hip implant.
基金Natural Science Foundation of China(No.5 98895 0 5 )
文摘Boundary element compliance matrix (BEM) method to deal with 3D elastic frictional contact problem was presented, and its calculation method and convergence criteria were discussed. It has the advantages of both boundary element method and compliance matrix methods: small number of inputting data, simple and convenient model, precise solution, short calculating time and requirements for a small quantity of computer memory. In comparison to the other BEM with friction problems, we obtain more precise solution and less iteration times. The effect of friction coefficient on contact area. contace state, and relative displacement, normal and tangential stress was analyzed by two examples. And because of the quickness of calculation of program and efficient method, we visualize the result in virtual reality (VR) environment. We grant the real time of VR and provide more immersion to users who ware the VR device.
文摘A simple interface element for analyzing contact friction problems is developed. Taking nodal displacements and contact stresses as unknowns, this element can simulate frictional slippage, decoupling and re-bonding of two bodies initially mating or having gaps at a common interface. The method is based on the Finite Element Method and load incremental theory. The geometric and static constraint conditions on contact surfaces are treated as additional conditions and are included in stiffness equations. This simple element has the advantages of easy implementation into standard finite element programs and fast speed for convergence as well as high accuracy for stress distribution in interface. Undesirable stress oscillations are also investigated whenever large stress gradients exist over the contact surfaces. Exact integration or the conventional Gauss integration scheme used to evaluate the interpolation function matrix of the interface element is found to be the source of the oscillations. Eigenmode analysis demonstrates that the stress behavior of an interface element can be improved by using the Newton-Cotes integration scheme. Finally, the test example of a strip footing problem is presented.
基金the National Natural Science Foundation of China(Grant No.11872033)the Beijing Natural Science Foundation,China(Grant No.3172017).
文摘The spatial and temporal evolution of real contact area of contact interface with loads is a challenge.It is generally believed that there is a positive linear correlation between real contact area and normal load.However,with the development of measuring instruments and methods,some scholars have found that the growth rate of real contact area will slow down with the increase of normal load under certain conditions,such as large-scale interface contact with small roughness surface,which is called the nonlinear phenomenon of real contact area.At present,there is no unified conclusion on the explanation of this phenomenon.We set up an experimental apparatus based on the total reflection principle to verify this phenomenon and analyze its mechanism.An image processing method is proposed,which can be used to quantitative analysis micro contact behaviors on macro contact phenomenon.The weighted superposition method is used to identify micro contact spots,to calculate the real contact area,and the color superimposed image is used to identify micro contact behaviors.Based on this method,the spatiotemporal evolution mechanism of real contact area nonlinear phenomena is quantitatively analyzed.Furthermore,the influence of nonlinear phenomenon of real contact area on the whole loading and unloading process is analyzed experimentally.It is found that the effects of fluid between contact interface,normal load amplitude and initial contact state on contact behavior cannot be ignored in large-scale interface contact with small roughness surface.
文摘Background: Non-linear signal analysis has proven to be a technique that is capable of revealing qualitative and quan- titative differentiations between different dynamical systems (biological or otherwise). In the present work it has been demonstrated that this capability reveals quantitative differences in the Magnetoencephalograms (MEG) received from patients with Idiopathic Generalized Epilepsy (IGE) and from healthy volunteers. Method: We present MEG record- ings of 10 epileptic patients with IGE and the corresponding ones from 10 healthy volunteers. A 122-channel SQUID biomagnetometer in an electromagnetically shielded room was used to record the MEG signals and the Grassber- ger-Procaccia method for the estimation of the correlation dimension was applied in the phase space reconstruction of the recorded signal from each patient. Results: The aforementioned analysis demonstrates the existence of spatially diffused low dimensionality in the MEG signals of patients with IGE. Conclusion: The obtained results provide support for the hypothesis that low dimensionality in MEG signals is linked to functional brain pathogeny.
文摘This article proposes a framework, called BP-M* which includes: 1) a methodology to analyze, engineer, restructure and implement business processes, and 2) a process model that extends the process diagram with the specification of resources that execute the process activities, allocation policies, schedules, times of activities, management of queues in input to the activities and workloads so that the same model can be simulated by a discrete event simulator. The BP-M* framework has been applied to a real case study, a public Contact Center which provides different typologies of answers to users’ requests. The simulation allows to study different system operating scenarios (“What-If” analysis) providing useful information for analysts to evaluate restructuring actions.