期刊文献+
共找到30,541篇文章
< 1 2 250 >
每页显示 20 50 100
Using deep neural networks coupled with principal component analysis for ore production forecasting at open-pit mines
1
作者 Chengkai Fan Na Zhang +1 位作者 Bei Jiang Wei Victor Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期727-740,共14页
Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challe... Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines. 展开更多
关键词 Oil sands production Open-pit mining Deep learning principal component analysis(PCA) Artificial neural network Mining engineering
下载PDF
A Hybrid Optimization Approach of Single Point Incremental Sheet Forming of AISI 316L Stainless Steel Using Grey Relation Analysis Coupled with Principal Component Analysiss
2
作者 A Visagan P Ganesh 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期160-166,共7页
We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were use... We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were used to develop double wall angle pyramid with aid of tungsten carbide tool. GRA coupled with PCA was used to plan the experiment conditions. Control factors such as Tool Diameter(TD), Step Depth(SD), Bottom Wall Angle(BWA), Feed Rate(FR) and Spindle Speed(SS) on Top Wall Angle(TWA) and Top Wall Angle Surface Roughness(TWASR) have been studied. Wall angle increases with increasing tool diameter due to large contact area between tool and workpiece. As the step depth, feed rate and spindle speed increase,TWASR decreases with increasing tool diameter. As the step depth increasing, the hydrostatic stress is raised causing severe cracks in the deformed surface. Hence it was concluded that the proposed hybrid method was suitable for optimizing the factors and response. 展开更多
关键词 single point incremental forming AISI 316L taguchi grey relation analysis principal component analysis surface roughness scanning electron microscopy
下载PDF
A Modified Principal Component Analysis Method for Honeycomb Sandwich Panel Debonding Recognition Based on Distributed Optical Fiber Sensing Signals
3
作者 Shuai Chen Yinwei Ma +5 位作者 Zhongshu Wang Zongmei Xu Song Zhang Jianle Li Hao Xu Zhanjun Wu 《Structural Durability & Health Monitoring》 EI 2024年第2期125-141,共17页
The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scatt... The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages,such as lightweight and ease of embedding.However,identifying the precise location of damage from the optical fiber signals remains a critical challenge.In this paper,a novel approach which namely Modified Sliding Window Principal Component Analysis(MSWPCA)was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors.The proposed method is able to extract signal characteristics interfered by measurement noise to improve the accuracy of damage detection.Specifically,we applied the MSWPCA method to monitor and analyze the debonding propagation process in honeycomb sandwich panel structures.Our findings demonstrate that the training model exhibits high precision in detecting the location and size of honeycomb debonding,thereby facilitating reliable and efficient online assessment of the structural health state. 展开更多
关键词 Structural health monitoring distributed opticalfiber sensor damage identification honeycomb sandwich panel principal component analysis
下载PDF
Robust Principal Component Analysis Integrating Sparse and Low-Rank Priors
4
作者 Wei Zhai Fanlong Zhang 《Journal of Computer and Communications》 2024年第4期1-13,共13页
Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Anal... Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Analysis (RPCA) addresses these limitations by decomposing data into a low-rank matrix capturing the underlying structure and a sparse matrix identifying outliers, enhancing robustness against noise and outliers. This paper introduces a novel RPCA variant, Robust PCA Integrating Sparse and Low-rank Priors (RPCA-SL). Each prior targets a specific aspect of the data’s underlying structure and their combination allows for a more nuanced and accurate separation of the main data components from outliers and noise. Then RPCA-SL is solved by employing a proximal gradient algorithm for improved anomaly detection and data decomposition. Experimental results on simulation and real data demonstrate significant advancements. 展开更多
关键词 Robust principal component Analysis Sparse Matrix Low-Rank Matrix Hyperspectral Image
下载PDF
Comparative Analysis of Differences among Northern,Jiangnan,and Lingnan Classical Private Gardens Using Principal Component Cluster Method
5
作者 Lijuan Sun Hui Wang 《Journal of Architectural Research and Development》 2024年第5期20-29,共10页
This paper investigates the design essence of Chinese classical private gardens,integrating their design elements and fundamental principles.It systematically analyzes the unique characteristics and differences among ... This paper investigates the design essence of Chinese classical private gardens,integrating their design elements and fundamental principles.It systematically analyzes the unique characteristics and differences among classical private gardens in the Northern,Jiangnan,and Lingnan regions.The study examines nine classical private gardens from Northern China,Jiangnan,and Lingnan by utilizing the advanced tool of principal component cluster analysis.Based on literature analysis and field research,273 variables were selected for principal component analysis,from which four components with higher contribution rates were chosen for further study.Subsequently,we employed clustering analysis techniques to compare the differences among the three types of gardens.The results reveal that the first principal component effectively highlights the differences between Jiangnan and Lingnan private gardens.The second principal component serves as the key to defining the types of Northern private gardens and distinguishing them from the other two types,and the third principal component indicates that Lingnan private gardens can be categorized into two distinct types as well. 展开更多
关键词 Classical gardens Private gardens DIFFERENCES principal component analysis Cluster analysis
下载PDF
Comparative assessment of the frying efficiency of standard and low linolenic rapeseed oils: Principal Component Analysis (PCA)
6
作者 Ming-Ming Hu Chuan-Qi Zhang Xin-Yu Wu 《Food and Health》 2024年第4期1-9,共9页
In this research,the performance of regular rapeseed oil(RSO)and modified low-linolenic rapeseed oil(LLRO)during frying was assessed using a frying procedure that commonly found in fast-food restaurants.Key physicoche... In this research,the performance of regular rapeseed oil(RSO)and modified low-linolenic rapeseed oil(LLRO)during frying was assessed using a frying procedure that commonly found in fast-food restaurants.Key physicochemical attributes of these oils were investigated.RSO and LLRO differed for initial linolenic acid(12.21%vs.2.59%),linoleic acid(19.15%vs.24.73%).After 6 successive days frying period of French fries,the ratio of linoleic acid to palmitic acid dropped by 54.49%in RSO,higher than that in LLRO(51.54%).The increment in total oxidation value for LLRO(40.46 unit)was observed to be significantly lower than those of RSO(42.58 unit).The changes in carbonyl group value and iodine value throughout the frying trial were also lower in LLRO compared to RSO.The formation rate in total polar compounds for LLRO was 1.08%per frying day,lower than that of RSO(1.31%).In addition,the formation in color component and degradation in tocopherols were proportional to the frying time for two frying oils.Besides,a longer induction period was also observed in LLRO(8.87 h)compared to RSO(7.68 h)after frying period.Overall,LLRO exhibited the better frying stability,which was confirmed by principal component analysis(PCA). 展开更多
关键词 FRYING rapeseed oil frying oil frying stability principal component analysis
下载PDF
Optimizing data aggregation and clustering in Internet of things networks using principal component analysis and Q-learning
7
作者 Abhishek Bajpai Harshita Verma Anita Yadav 《Data Science and Management》 2024年第3期189-196,共8页
The Internet of things(IoT)is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring,surveillance,and healthcare.To address the limitations im... The Internet of things(IoT)is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring,surveillance,and healthcare.To address the limitations imposed by inadequate resources,energy,and network scalability,this type of network relies heavily on data aggregation and clustering algorithms.Although various conventional studies have aimed to enhance the lifespan of a network through robust systems,they do not always provide optimal efficiency for real-time applications.This paper presents an approach based on state-of-the-art machine-learning methods.In this study,we employed a novel approach that combines an extended version of principal component analysis(PCA)and a reinforcement learning algorithm to achieve efficient clustering and data reduction.The primary objectives of this study are to enhance the service life of a network,reduce energy usage,and improve data aggregation efficiency.We evaluated the proposed methodology using data collected from sensors deployed in agricultural fields for crop monitoring.Our proposed approach(PQL)was compared to previous studies that utilized adaptive Q-learning(AQL)and regional energy-aware clustering(REAC).Our study outperformed in terms of both network longevity and energy consumption and established a fault-tolerant network. 展开更多
关键词 Wireless sensor network principal component analysis(PCA) Reinforcement learning Data aggregation
下载PDF
Construction of Anti-breaking Models of the Main Veins of Flue-cured Tobacco Leaves and Principal Component Analysis 被引量:4
8
作者 王宝玉 孙婷婷 +3 位作者 章国顺 张蜀香 阮龙 张云华 《Agricultural Science & Technology》 CAS 2011年第11期1615-1616,1656,共3页
[Objective] This study aimed to explore the related mechanisms of the breaking of flue-cured tobacco leaves. [Method] Anti-breaking models of the main veins of flue-cured tobacco leaves were constructed for principal ... [Objective] This study aimed to explore the related mechanisms of the breaking of flue-cured tobacco leaves. [Method] Anti-breaking models of the main veins of flue-cured tobacco leaves were constructed for principal component analysis on the anti-breaking index, leaf traits and cellulose contents. [Result] The results showed that the growth traits had certain relevance with the cellulose contents while the leaf weight assumed a significant negative correlation with the anti-breaking index, indicating that the heavier the leaf weight was, the weaker the anti-breaking capacity of flue-cured tobacco would be; the cross-sectional area of main veins and the cellulose contents had shown a positive correlation with the anti-breaking index, indicating that the thicker the main vein of flue-cured tobacco was, the higher the cellulose contents would be, and the stronger the anti-breaking capacity of flue-cured tobacco leaves would be. [Conclusion] This study provided theoretical basis and reference to improve tobacco production and enhance the quality of flue-cured tobacco. 展开更多
关键词 Flue-cured tobacco Main vein Anti-breaking index principal component analysis
下载PDF
Correlation and Principal Component Analysis on Main Agronomic Traits of New Waxy Corn Varieties 被引量:6
9
作者 吕莹莹 李特 +3 位作者 张萌 沈丹丹 张士东 张恩盈 《Agricultural Science & Technology》 CAS 2017年第9期1732-1737,共6页
[Objective] This study was conducted to provide certain theoretical reference for the comprehensive evaluation and breeding of new fresh waxy corn vari- eties. [Method] With 5 good fresh waxy corn varieties as experim... [Objective] This study was conducted to provide certain theoretical reference for the comprehensive evaluation and breeding of new fresh waxy corn vari- eties. [Method] With 5 good fresh waxy corn varieties as experimental materials, correlation analysis and principal component anatysis were performed on 13 agronomic traits, i.e., plant height, ear position, ear weight, ear diameter, axis diameter, ear length, bald tip length, ear row number, number of grains per row, 100-kernel weight, fresh ear yield, tassel length, and tassel branch number. [Result] The principal component analysis performed to the 13 agronomic traits showed that the first three principal components, i.e., the fresh ear yield factors, the tassel factors and the bald top factors, had an accumulative contribution rate over 87.2767%, and could basically represent the genetic information represented by the 13 traits. The first principal component is the main index for the selection and evaluation of good corn varieties which should have large ear, large ear diameter but small axis diameter, i.e., longer grains, larger number of grains per ear, higher, 100-grain weight and higher plant height. As to the second principal component, the plants of fresh corn varieties are best to have longer tassel and not too many branches, and under the premise of ensuring enough pollen for the female spike, the varieties with fewer tassel branches shoud be selected as far as possible. From the point of the third principal component, bald tip length affects the marketing quality of fresh corn, and during fariety evaluation and breeding, the bald top length should be control at the Iowest standard. [Conclusion] The fresh ear yield of corn is in close positive correlation with ear weight, 100-grain weight, ear diameter, number of grains per row and ear length, and plant height also affects fresh ear yield. 展开更多
关键词 Waxy corn Fresh ear yield Agronomic traits principal component analysis Correlation analysis
下载PDF
Modified algorithm of principal component analysis for face recognition 被引量:3
10
作者 罗琳 邹采荣 仰枫帆 《Journal of Southeast University(English Edition)》 EI CAS 2006年第1期26-30,共5页
In principal component analysis (PCA) algorithms for face recognition, to reduce the influence of the eigenvectors which relate to the changes of the illumination on abstract features, a modified PCA (MPCA) algori... In principal component analysis (PCA) algorithms for face recognition, to reduce the influence of the eigenvectors which relate to the changes of the illumination on abstract features, a modified PCA (MPCA) algorithm is proposed. The method is based on the idea of reducing the influence of the eigenvectors associated with the large eigenvalues by normalizing the feature vector element by its corresponding standard deviation. The Yale face database and Yale face database B are used to verify the method. The simulation results show that, for front face and even under the condition of limited variation in the facial poses, the proposed method results in better performance than the conventional PCA and linear discriminant analysis (LDA) approaches, and the computational cost remains the same as that of the PCA, and much less than that of the LDA. 展开更多
关键词 face recognition principal component analysis linear discriminant analysis
下载PDF
Low-dimensional multi-spectral space for color reproduction based on nonnegative constrained principal component analysis 被引量:1
11
作者 王莹 曾平 +1 位作者 罗雪梅 谢琨 《Journal of Southeast University(English Edition)》 EI CAS 2009年第4期486-490,共5页
In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonne... In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonnegative constrained principal component analysis method is proposed to construct a low-dimensional multi-spectral space and accomplish the conversion between the new constructed space and the multispectral space. First, the reason behind the negative data is analyzed and a nonnegative constraint is imposed on the classic PCA. Then a set of nonnegative linear independence weight vectors of principal components is obtained, by which a lowdimensional space is constructed. Finally, a nonlinear optimization technique is used to determine the projection vectors of the high-dimensional multi-spectral data in the constructed space. Experimental results show that the proposed method can keep the reconstructed spectral data in [ 0, 1 ]. The precision of the space created by the proposed method is equivalent to or even higher than that by the PCA. 展开更多
关键词 spectral color science nonnegative constrained principal component analysis low-dimensional spectral space nonlinear optimization multi-spectral images spectral reflectance
下载PDF
Spectrum Detection of Rice Planthopper Populations from Canopy Reflectance Based on Principal Component Regression 被引量:1
12
作者 王新忠 李大鹏 《Plant Diseases and Pests》 CAS 2010年第4期20-21,24,共3页
[ Objective] Aiming at problems of early warning for occurrence of rice pests and dynamic monitoring of rice planthopper in field, a detection model for rice planthopper populations was established based on PCR with s... [ Objective] Aiming at problems of early warning for occurrence of rice pests and dynamic monitoring of rice planthopper in field, a detection model for rice planthopper populations was established based on PCR with spectrum detection technology, r Method] Canopy reflectance data were collected using FieldSpeo 3 spectrometer in paddy field, and rice planthoppers populations in hundred hills were detected simultaneously. The sample size was 71, and there were 51 samples in the calibration set and 20 samples in the prediction set. Modeling band was 350 -1 139 nm, and the original spectra were pretreated by first order differential. [ Result] The correlation coefficient of measured values and predictive values was 0. 78, and the RMSEP was 161. [ Conlmion] Spectrum detection was able to be used in investigation and forecasting of rice planthoppere. 展开更多
关键词 Rice planthopper SPECTRUM principal component regression PEST RICE
下载PDF
Estimation of the Number of Collapsed Houses Damaged by Typhoon Based on Principal Components Analysis and Support Vector Machine 被引量:2
13
作者 张新厂 娄伟平 《Meteorological and Environmental Research》 CAS 2010年第4期11-14,共4页
The evaluation model was established to estimate the number of houses collapsed during typhoon disaster for Zhejiang Province.The factor leading to disaster,the environment fostering disaster and the exposure of build... The evaluation model was established to estimate the number of houses collapsed during typhoon disaster for Zhejiang Province.The factor leading to disaster,the environment fostering disaster and the exposure of buildings were processed by Principal Component Analysis.The key factor was extracted to support input of vector machine model and to build an evaluation model;the historical fitting result kept in line with the fact.In the real evaluation of two typhoons landed in Zhejiang Province in 2008 and 2009,the coincidence of evaluating result and actual value proved the feasibility of this model. 展开更多
关键词 TYPHOON The number of collapsed houses principal components Analysis Support Vector Machine EVALUATION China
下载PDF
FUZZY WITHIN-CLASS MATRIX PRINCIPAL COMPONENT ANALYSIS AND ITS APPLICATION TO FACE RECOGNITION 被引量:3
14
作者 朱玉莲 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第2期141-147,共7页
Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of sampl... Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of samples. As a result, the extracted features cannot provide enough useful information for distinguishing pat- tern from one another, and further resulting in degradation of classification performance. To fullly use class in- formation of samples, a novel method, called the fuzzy within-class MatPCA (F-WMatPCA)is proposed. F-WMatPCA utilizes the fuzzy K-nearest neighbor method(FKNN) to fuzzify the class membership degrees of a training sample and then performs fuzzy MatPCA within these patterns having the same class label. Due to more class information is used in feature extraction, F-WMatPCA can intuitively improve the classification perfor- mance. Experimental results in face databases and some benchmark datasets show that F-WMatPCA is effective and competitive than MatPCA. The experimental analysis on face image databases indicates that F-WMatPCA im- proves the recognition accuracy and is more stable and robust in performing classification than the existing method of fuzzy-based F-Fisherfaces. 展开更多
关键词 face recognition principal component analysis (PCA) matrix pattern PCA(MatPCA) fuzzy K-nearest neighbor(FKNN) fuzzy within-class MatPCA(F-WMatPCA)
下载PDF
Correlation, Principal Component and Grey Relation Analysis of Sweetpotato Root Biological Traits
15
作者 汪宝卿 杜召海 +3 位作者 张海燕 解备涛 王庆美 张立明 《Agricultural Science & Technology》 CAS 2015年第3期479-485,共7页
[Objective] This study was conducted to explore the internal relationship among root biological traits of sweetpotato, as well as the regularity in their formation and differentiation. [Method] The root traits of 10 s... [Objective] This study was conducted to explore the internal relationship among root biological traits of sweetpotato, as well as the regularity in their formation and differentiation. [Method] The root traits of 10 sweetpotato cultivars were measured through hydroponic culture in a greenhouse and field survey, and then their correlations were analyzed by statistical methods. [Result] The root morphological traits of sweetpotato at seedling stage such as projected area, surface area, average diameter and volume processed the highest contribution rate (80.56%) 10 d after transplanting, and the contribution rate of root average diameter reached 27.79% 20 d after transplanting. Storage root fresh weight per plant shared extremely significant positive correlations with storage root fresh weight of penultimate node and storage root fresh weight of antepenultimate node, and a significant positive corre- lation with commercial storage root number, and a significant negative correlation with storage root number of penultimate node. Among them, the correlation coeffi- cient of storage root fresh weight per plant with storage root fresh weight of antepenultimate node was the highest (0.659 5). Fifteen days after transplanting, storage root fresh weight per plant had significant negative correlations with root projected area, surface area and volume. There was a significant positive correlation between root dry weight and storage root fresh weight per plant 25 d after transplanting. Root dry weight, volume, length, average diameter of sweetpotato seedlings had higher relational degrees with storage root fresh weight per plant. Ten and twenty days after transplanting were important time for the growth and differentiation of sweetpotato roots. In addition, node length and planting depth had certain influence on sweetpotato yield, and direct relationship existed between the seedling root biological traits and storage root yield of sweetpotato. [Conclusion] The results provide theoretical support for standard cultivation and new variety breeding of sweetpotato. 展开更多
关键词 SWEETPOTATO ROOTS CORRELATION principal component analysis Grey relational analysis
下载PDF
Principal Component Feature for ANN-Based Speech Recognition
16
作者 顾明亮 王太君 +1 位作者 史笑兴 何振亚 《Journal of Southeast University(English Edition)》 EI CAS 1998年第2期13-18,共6页
Using function approximation technology and principal component analysis method, this paper presents a principal component feature to solve the time alignment problem and to simplify the structure of neural network. I... Using function approximation technology and principal component analysis method, this paper presents a principal component feature to solve the time alignment problem and to simplify the structure of neural network. Its extraction simulates the processing of speech information in human auditory system. The experimental results show that the principal component feature based recognition system outperforms the standard CDHMM and GMDS method in many aspects. 展开更多
关键词 principal component analysis feature extraction speech recognition
下载PDF
Principal Component Analysis on Traits Related to Lodging Resistance of Plateau Japonica Rice
17
作者 丁明亮 浦秋红 +2 位作者 高春琼 袁平荣 苏振喜 《Agricultural Science & Technology》 CAS 2015年第6期1115-1120,共6页
Objective] This study was conducted to investigate the main factors affect-ing the lodging resistance of plateau japonica rice. [Method] Twenty agronomic traits related to lodging resistance of plateau japonica rice w... Objective] This study was conducted to investigate the main factors affect-ing the lodging resistance of plateau japonica rice. [Method] Twenty agronomic traits related to lodging resistance of plateau japonica rice were analyzed by principal component analysis and correlation analysis among 26 varieties/lines of plateau japonica rice. [Result] The lodging resistance of the 26 varieties/lines had great dif-ference among different agronomic traits. Plant height, and wal thickness of the 4th, 3rd and 2nd internodes under the panicle had the most important influence on lodging resistance, while the diameter of the 3rd, 2nd, 4th, 1st nodes under the panicle, length of the 4th and 3rd internodes under the panicle, wal thickness of the 1st internode under the panicle had less influence. The other nine agronomic traits of rice culm did not affect or indirectly affected lodging resistance through above-mentioned agro-nomic traits. Lodging resistance had significant correlations with plant height, length of the 4th and 3rd internodes under the panicle, wal thickness of the 1st, 2nd, 3rd and 4th internodes under the panicle and diameter of the 1st, 2nd, 3rd and 4th node sunder the panicle, had insignificant correlations with panicle length, panicle weight, length of the 1st and 2nd internodes under the panicle, diameter of the 1st, 2nd, 3rd and 4th internodes under the panicle, diameter of the 5th node under the panicle. [Conclu-sion] More attention should be paid to the main factors affecting lodging resistance in breeding to improve lodging resistance of plateau japonica rice. 展开更多
关键词 Plateau japonica rice Lodging resistance Agronomic traits principal component analysis
下载PDF
Study on Trace Elements in Rehmannia glutinosa Libosch. by Principal Component Analysis and Clustering Analysis
18
作者 申明金 陈丽 曹洪斌 《Agricultural Science & Technology》 CAS 2013年第12期1764-1768,共5页
[Objective] This study aimed to investigate the trace elements in Rehman- nia glutinosa Libosch. by using principal component analysis and clustering analysis. [Method] Principal component analysis and clustering anal... [Objective] This study aimed to investigate the trace elements in Rehman- nia glutinosa Libosch. by using principal component analysis and clustering analysis. [Method] Principal component analysis and clustering analysis of R. glutinosa medicinal materials from different sources were conducted with contents of six trace elements as indices. [Result] The principal component analysis could comprehen- sively evaluate the quality of R. glutinosa samples with objective results which was consistent with the results of clustering analysis. [Conclusion] Principal component analysis and clustering analysis methods can be used for the quality evaluation of Chinese medicinal materials with multiple indices. 展开更多
关键词 Rehmannia glutinosa Libosch. (Radix Rehmanniae) Trace elements principal component analysis Clustering analysis
下载PDF
Evaluation on Land Ecological Security in Hohhot Based on Principal Component Analysis
19
作者 侯林春 王瑛璇 《Agricultural Science & Technology》 CAS 2017年第7期1255-1259,共5页
Based on the status of land ecological resources in Hohhot, 20 indexes covering nature, resource environment, economy and society were selected and the evaluation index system was established. With the principal compo... Based on the status of land ecological resources in Hohhot, 20 indexes covering nature, resource environment, economy and society were selected and the evaluation index system was established. With the principal component analysis, the land ecological security of Hohhot from 2009 to 2015 was analyzed. The results showed that the land ecological security of Hohhot was declining year by year in 2009-2015. Besides, per capital GDP and public green area, the proportion of in- dustry and the price index of agricultural and animal husbandry production materials were the key factors influencing the land ecological security of Hohhot. The key for protection of the land ecological security may lie in the protection of land quality and prevention of land degradation in farming and stock-breeding areas. 展开更多
关键词 Land ecological security principal component FACTOR COUNTERMEASURES Hohhot
下载PDF
Kernel principal component analysis network for image classification 被引量:5
20
作者 吴丹 伍家松 +3 位作者 曾瑞 姜龙玉 Lotfi Senhadji 舒华忠 《Journal of Southeast University(English Edition)》 EI CAS 2015年第4期469-473,共5页
In order to classify nonlinear features with a linear classifier and improve the classification accuracy, a deep learning network named kernel principal component analysis network( KPCANet) is proposed. First, the d... In order to classify nonlinear features with a linear classifier and improve the classification accuracy, a deep learning network named kernel principal component analysis network( KPCANet) is proposed. First, the data is mapped into a higher-dimensional space with kernel principal component analysis to make the data linearly separable. Then a two-layer KPCANet is built to obtain the principal components of the image. Finally, the principal components are classified with a linear classifier. Experimental results showthat the proposed KPCANet is effective in face recognition, object recognition and handwritten digit recognition. It also outperforms principal component analysis network( PCANet) generally. Besides, KPCANet is invariant to illumination and stable to occlusion and slight deformation. 展开更多
关键词 deep learning kernel principal component analysis net(KPCANet) principal component analysis net(PCANet) face recognition object recognition handwritten digit recognition
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部