Two-Line Element(TLE)datasets are the only orbital data source of Earth-orbiting space objects for many civil users for their research and applications.The datasets have uneven qualities that may affect the reliabilit...Two-Line Element(TLE)datasets are the only orbital data source of Earth-orbiting space objects for many civil users for their research and applications.The datasets have uneven qualities that may affect the reliability of the propagated positions of space objects using a single TLE.The least squares approach to use multiple TLEs also suffers from the poor quality of some TLEs,and reliable error information cannot be available.This paper proposes a simplex algorithm to estimate an optimal TLE from multiple TLEs and obtain the uncertainty of each element.It is a derivative-free technique that can deal with various orbit types.Experiments have demonstrated that using the TLE estimated from the simplex method is more reliable,stable,and effective than those from the batch least squares method.As an application example,the optimal TLE and its uncertainty are used for predicting the fallen area,keeping the actual fallen site in the prediction areas.展开更多
目的 Linear Programming的simplexmethod建模求最优解。方法应用simplexmethod.结果建立了LinearProgramming的数学模型并用simplexmethod求得了最优解.结论因为单纯形表反映了Linear Programming的所有信息,故用simplexmethod可简便...目的 Linear Programming的simplexmethod建模求最优解。方法应用simplexmethod.结果建立了LinearProgramming的数学模型并用simplexmethod求得了最优解.结论因为单纯形表反映了Linear Programming的所有信息,故用simplexmethod可简便地求得最优解.simplexmethod的基本思路是:先将Linear Programming用sim-plexmethod划为标准型,根据问题的标准型,进行初等行变换,将主元素列除主元素化为1外其余的元素均化为0,当基变量值全为非负时,问题就得到了最优解.展开更多
A global convergent algorithm is proposed to solve bilevel linear fractional-linear programming, which is a special class of bilevel programming. In our algorithm, replacing the lower level problem by its dual gap equ...A global convergent algorithm is proposed to solve bilevel linear fractional-linear programming, which is a special class of bilevel programming. In our algorithm, replacing the lower level problem by its dual gap equaling to zero, the bilevel linear fractional-linear programming is transformed into a traditional sin- gle level programming problem, which can be transformed into a series of linear fractional programming problem. Thus, the modi- fied convex simplex method is used to solve the infinite linear fractional programming to obtain the global convergent solution of the original bilevel linear fractional-linear programming. Finally, an example demonstrates the feasibility of the proposed algorithm.展开更多
In this article,we construct the most powerful family of simultaneous iterative method with global convergence behavior among all the existing methods in literature for finding all roots of non-linear equations.Conver...In this article,we construct the most powerful family of simultaneous iterative method with global convergence behavior among all the existing methods in literature for finding all roots of non-linear equations.Convergence analysis proved that the order of convergence of the family of derivative free simultaneous iterative method is nine.Our main aim is to check out the most regularly used simultaneous iterative methods for finding all roots of non-linear equations by studying their dynamical planes,numerical experiments and CPU time-methodology.Dynamical planes of iterative methods are drawn by using MATLAB for the comparison of global convergence properties of simultaneous iterative methods.Convergence behavior of the higher order simultaneous iterative methods are also illustrated by residual graph obtained from some numerical test examples.Numerical test examples,dynamical behavior and computational efficiency are provided to present the performance and dominant efficiency of the newly constructed derivative free family of simultaneous iterative method over existing higher order simultaneous methods in literature.展开更多
One of the practical approaches in identifying structures is the non-linear resonant decay method which identifies a non-linear dynamic system utilizing a model based on linear modal space containing the underlying li...One of the practical approaches in identifying structures is the non-linear resonant decay method which identifies a non-linear dynamic system utilizing a model based on linear modal space containing the underlying linear system and a small number of extra terms that exhibit the non-linear effects.In this paper,the method is illustrated in a simulated system and an experimental structure.The main objective of the non-linear resonant decay method is to identify the non-linear dynamic systems based on the use of a multi-shaker excitation using appropriated excitation which is obtained from the force appropriation approach.The experimental application of the method is indicated to provide suitable estimates of modal parameters for the identification of non-linear models of structures.展开更多
For physical ozone absorption without reaction,two parametric estimation methods,i.e.the common linear least square fitting and non-linear Simplex search methods,were applied,respectively,to determine the ozone mass t...For physical ozone absorption without reaction,two parametric estimation methods,i.e.the common linear least square fitting and non-linear Simplex search methods,were applied,respectively,to determine the ozone mass transfer coefficient during absorption and both methods give almost the same mass transfer coefficient.While for chemical absorption with ozone decomposition reaction,the common linear least square fitting method is not applicable for the evaluation of ozone mass transfer coefficient due to the difficulty of model linearization for describing ozone concentration dissolved in water.The nonlinear Simplex method obtains the mass transfer coefficient by minimizing the sum of the differences between the simulated and experimental ozone concentration during the whole absorption process,without the limitation of linear relationship between the dissolved ozone concentration and absorption time during the initial stage of absorption.Comparison of the ozone concentration profiles between the simulation and experimental data demonstrates that Simplex method may determine ozone mass transfer coefficient during absorption in an accurate and high efficiency way with wide applicability.展开更多
In this paper, we discuss a new method employed to tackle non-linear partial differential equations, namely Double Elzaki Transform Decomposition Method (DETDM). This method is a combination of the Double ELzaki Trans...In this paper, we discuss a new method employed to tackle non-linear partial differential equations, namely Double Elzaki Transform Decomposition Method (DETDM). This method is a combination of the Double ELzaki Transform and Adomian Decomposition Method. This technique is hereafter provided and supported with necessary illustrations, together with some attached examples. The results reveal that the new method is very efficient, simple and can be applied to other non-linear problems.展开更多
A new partial pricing column rule is proposed to the basis-deficiency-allowing simplex method developed by Pan.Computational results obtained with a set of small problems and a set of standard NETLIB problems show its...A new partial pricing column rule is proposed to the basis-deficiency-allowing simplex method developed by Pan.Computational results obtained with a set of small problems and a set of standard NETLIB problems show its promise of success.展开更多
A PID parameters tuning and optimization method for a turbine engine based on the simplex search method was proposed. Taking time delay of combustion and actuator into account, a simulation model of a PID control syst...A PID parameters tuning and optimization method for a turbine engine based on the simplex search method was proposed. Taking time delay of combustion and actuator into account, a simulation model of a PID control system for a turbine engine was developed. A performance index based on the integral of absolute error (IAE) was given as an objective function of optimization. In order to avoid the sensitivity that resulted from the initial values of the simplex search method, the traditional Ziegler-Nichols method was used to tune PID parameters to obtain the initial values at first, then the simplex search method was applied to optimize PID parameters for the turbine engine. Simulation results indicate that the simplex search method is a reasonable and effective method for PID controller parameters tuning and optimization.展开更多
This study adopts the Dantzig’s Simplex method to investigate optimization of sand casting parameters for optimum service performance. Some process variables and mechanical properties were adapted into the Simplex me...This study adopts the Dantzig’s Simplex method to investigate optimization of sand casting parameters for optimum service performance. Some process variables and mechanical properties were adapted into the Simplex method. Aluminium alloy samples were cast, machined and subjected to a series of mechanical tests. From the body of data collected, linear functions and constraint equations were formulated and employed in the Dantzig’s Simplex method for optimization of process parameters. The results showed that the Simplex method can be adapted for studying performance opti- mization of castings.展开更多
This work presents an application of the Simplex Method for solving an optimal planning problem for cancer treatment by radiotherapy. Linear Programming can aid the optimal planning for radiation therapy, where the co...This work presents an application of the Simplex Method for solving an optimal planning problem for cancer treatment by radiotherapy. Linear Programming can aid the optimal planning for radiation therapy, where the concern is to apply a high enough radiation in the tumor while saving significantly healthy regions or critical organs.展开更多
We review three derivative-free methods developed for uncertainty estimation of non-linear error propagation, namely, MC(Monte Carlo), SUT(scaled unscented transformation), and SI(sterling interpolation). In order to ...We review three derivative-free methods developed for uncertainty estimation of non-linear error propagation, namely, MC(Monte Carlo), SUT(scaled unscented transformation), and SI(sterling interpolation). In order to avoid preset parameters like as these three methods need, we introduce a new method to uncertainty estimation for the first time, namely, SCR(spherical cubature rule), which is no need for setting parameters. By theoretical derivation, we prove that the precision of uncertainty obtained by SCR can reach second-order. We conduct four synthetic experiments, for the first two experiments, the results obtained by SCR are consistent with the other three methods with optimal setting parameters, but SCR is easier to operate than other three methods, which verifies the superiority of SCR in calculating the uncertainty. For the third experiment, real-time calculation is required, so the MC is hardly feasible. For the forth experiment, the SCR is applied to the inversion of seismic fault parameter which is a common problem in geophysics, and we study the sensitivity of surface displacements to fault parameters with errors. Our results show that the uncertainty of the surface displacements is the magnitude of ±10 mm when the fault length contains a variance of 0.01 km^(2).展开更多
In Europe, computation of displacement demand for seismic assessment of existing buildings is essentially based on a simplified formulation of the N2 method as prescribed by Eurocode 8(EC8). However, a lack of accurac...In Europe, computation of displacement demand for seismic assessment of existing buildings is essentially based on a simplified formulation of the N2 method as prescribed by Eurocode 8(EC8). However, a lack of accuracy of the N2 method in certain conditions has been pointed out by several studies. This paper addresses the assessment of effectiveness of the N2 method in seismic displacement demand determination in non-linear domain. The objective of this work is to investigate the accuracy of the N2 method through comparison with displacement demands computed using non-linear timehistory analysis(NLTHA). Results show that the original N2 method may lead to overestimation or underestimation of displacement demand predictions. This may affect results of mechanical model-based assessment of seismic vulnerability at an urban scale. Hence, the second part of this paper addresses an improvement of the N2 method formula by empirical evaluation of NLTHA results based on EC8 ground-classes. This task is formulated as a mathematical programming problem in which coefficients are obtained by minimizing the overall discrepancy between NLTHA and modified formula results. Various settings of the mathematical programming problem have been solved using a global optimization metaheuristic. An extensive comparison between the original N2 method formulation and optimized formulae highlights benefits of the strategy.展开更多
The paper presents an approach for avoiding and minimizing the complementary pivots in a simplex based solution method for a quadratic programming problem. The linearization of the problem is slightly changed so that ...The paper presents an approach for avoiding and minimizing the complementary pivots in a simplex based solution method for a quadratic programming problem. The linearization of the problem is slightly changed so that the simplex or interior point methods can solve with full speed. This is a big advantage as a complementary pivot algorithm will take roughly eight times as longer time to solve a quadratic program than the full speed simplex-method solving a linear problem of the same size. The strategy of the approach is in the assumption that the solution of the quadratic programming problem is near the feasible point closest to the stationary point assuming no constraints.展开更多
In this study we discuss the use of the simplex method to solve allocation problems whose flow matrices are doubly stochastic. Although these problems can be solved via a 0 - 1 integer programming method, H. W. Kuhn [...In this study we discuss the use of the simplex method to solve allocation problems whose flow matrices are doubly stochastic. Although these problems can be solved via a 0 - 1 integer programming method, H. W. Kuhn [1] suggested the use of linear programming in addition to the Hungarian method. Specifically, we use the existence theorem of the solution along with partially total unimodularity and nonnegativeness of the incidence matrix to prove that the simplex method facilitates solving these problems. We also provide insights as to how a partition including a particular unit may be obtained.展开更多
This paper demonstrates the approximate analytical solution to a non-linear singular two-point boundary-value problem which describes oxygen diffusion in a planar cell. The model is based on diffusion equation contain...This paper demonstrates the approximate analytical solution to a non-linear singular two-point boundary-value problem which describes oxygen diffusion in a planar cell. The model is based on diffusion equation containing a non-linear term related to Michaelis-Menten kinetics of enzymatic reaction. Approximate analytical expression of concentration of oxygen is derived using new Homotopy perturbation method for various boundary conditions. The validity of the obtained solutions is verified by the numerical results.展开更多
For a specific combustion problem involving calculations of several species at the equilibrium state, it is simpler to write a general computer program and calculate the combustion concentration. Original work describ...For a specific combustion problem involving calculations of several species at the equilibrium state, it is simpler to write a general computer program and calculate the combustion concentration. Original work describes, an adaptation of Newton-Raphson method was used for solving the highly nonlinear system of equations describing the formation of equilibrium products in reacting of fuel-additive-air mixtures. This study also shows what possible of the results. In this paper, to be present the efficient numerical algorithms for. solving the combustion problem, to be used nonlinear equations based on the iteration method and high order of the Taylor series. The modified Adomian decomposition method was applied to construct the numerical algorithms. Some numerical illustrations are given to show the efficiency of algorithms. Comparisons of results by the new Matlab routines and previous routines, the result data indicate that the new Matlab routines are reliable, typical deviations from previous results are less than 0.05%.展开更多
In this paper, a new hybrid algorithm based on exploration power of a new improvement self-adaptive strategy for controlling parameters in DE (differential evolution) algorithm and exploitation capability of Nelder-...In this paper, a new hybrid algorithm based on exploration power of a new improvement self-adaptive strategy for controlling parameters in DE (differential evolution) algorithm and exploitation capability of Nelder-Mead simplex method is presented (HISADE-NMS). The DE has been used in many practical cases and has demonstrated good convergence properties. It has only a few control parameters as number of particles (NP), scaling factor (F) and crossover control (CR), which are kept fixed throughout the entire evolutionary process. However, these control parameters are very sensitive to the setting of the control parameters based on their experiments. The value of control parameters depends on the characteristics of each objective function, therefore, we have to tune their value in each problem that mean it will take too long time to perform. In the new manner, we present a new version of the DE algorithm for obtaining self-adaptive control parameter settings. Some modifications are imposed on DE to improve its capability and efficiency while being hybridized with Nelder-Mead simplex method. To valid the robustness of new hybrid algorithm, we apply it to solve some examples of structural optimization constraints.展开更多
An iterative algorithm for modeling of non-linear joint by the displacement discontinuity method (DDM) was described, and the effect of the non-linear joint on the in-situ stress field was investigated in this paper. ...An iterative algorithm for modeling of non-linear joint by the displacement discontinuity method (DDM) was described, and the effect of the non-linear joint on the in-situ stress field was investigated in this paper. The Barton-Bandis (BB) non-linear joint model and failure criterion were adopted in the new DDM program. Using this program, the stress field around the non-linear joint was obtained, the parameters analysis of the joint was carried out, and the deformation and stress distribution of the joint were studied. The simulation results show that: (1)the in-situ stress is significantly affected by the joint; (2)the increase of stiffness, friction angle, and thickness of the joint affect the stress concentration in different ways; (3)the influence distance of the joint changes with the angle of the joint; (4)the deformation and stress of the joint change with the point position.展开更多
基金supported by Chongqing Municipal Natural Science Foundation of General Program(CSTB2022NSCQMSX1093)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202200701)China Postdoctoral Science Foundation(2021M703487).
文摘Two-Line Element(TLE)datasets are the only orbital data source of Earth-orbiting space objects for many civil users for their research and applications.The datasets have uneven qualities that may affect the reliability of the propagated positions of space objects using a single TLE.The least squares approach to use multiple TLEs also suffers from the poor quality of some TLEs,and reliable error information cannot be available.This paper proposes a simplex algorithm to estimate an optimal TLE from multiple TLEs and obtain the uncertainty of each element.It is a derivative-free technique that can deal with various orbit types.Experiments have demonstrated that using the TLE estimated from the simplex method is more reliable,stable,and effective than those from the batch least squares method.As an application example,the optimal TLE and its uncertainty are used for predicting the fallen area,keeping the actual fallen site in the prediction areas.
文摘目的 Linear Programming的simplexmethod建模求最优解。方法应用simplexmethod.结果建立了LinearProgramming的数学模型并用simplexmethod求得了最优解.结论因为单纯形表反映了Linear Programming的所有信息,故用simplexmethod可简便地求得最优解.simplexmethod的基本思路是:先将Linear Programming用sim-plexmethod划为标准型,根据问题的标准型,进行初等行变换,将主元素列除主元素化为1外其余的元素均化为0,当基变量值全为非负时,问题就得到了最优解.
基金supported by the National Natural Science Foundation of China(70771080)the Special Fund for Basic Scientific Research of Central Colleges+2 种基金China University of Geosciences(Wuhan) (CUG090113)the Research Foundation for Outstanding Young TeachersChina University of Geosciences(Wuhan)(CUGQNW0801)
文摘A global convergent algorithm is proposed to solve bilevel linear fractional-linear programming, which is a special class of bilevel programming. In our algorithm, replacing the lower level problem by its dual gap equaling to zero, the bilevel linear fractional-linear programming is transformed into a traditional sin- gle level programming problem, which can be transformed into a series of linear fractional programming problem. Thus, the modi- fied convex simplex method is used to solve the infinite linear fractional programming to obtain the global convergent solution of the original bilevel linear fractional-linear programming. Finally, an example demonstrates the feasibility of the proposed algorithm.
基金the Natural Science Foundation of China(Grant Nos.61673169,11301127,11701176,11626101,and 11601485)The Natural Science Foundation of Huzhou City(Grant No.2018YZ07).
文摘In this article,we construct the most powerful family of simultaneous iterative method with global convergence behavior among all the existing methods in literature for finding all roots of non-linear equations.Convergence analysis proved that the order of convergence of the family of derivative free simultaneous iterative method is nine.Our main aim is to check out the most regularly used simultaneous iterative methods for finding all roots of non-linear equations by studying their dynamical planes,numerical experiments and CPU time-methodology.Dynamical planes of iterative methods are drawn by using MATLAB for the comparison of global convergence properties of simultaneous iterative methods.Convergence behavior of the higher order simultaneous iterative methods are also illustrated by residual graph obtained from some numerical test examples.Numerical test examples,dynamical behavior and computational efficiency are provided to present the performance and dominant efficiency of the newly constructed derivative free family of simultaneous iterative method over existing higher order simultaneous methods in literature.
文摘One of the practical approaches in identifying structures is the non-linear resonant decay method which identifies a non-linear dynamic system utilizing a model based on linear modal space containing the underlying linear system and a small number of extra terms that exhibit the non-linear effects.In this paper,the method is illustrated in a simulated system and an experimental structure.The main objective of the non-linear resonant decay method is to identify the non-linear dynamic systems based on the use of a multi-shaker excitation using appropriated excitation which is obtained from the force appropriation approach.The experimental application of the method is indicated to provide suitable estimates of modal parameters for the identification of non-linear models of structures.
基金Project(2011467001)supported by the Ministry of Environment Protection of ChinaProject(2010DFB94130)supported by the Ministry of Science and Technology of China
文摘For physical ozone absorption without reaction,two parametric estimation methods,i.e.the common linear least square fitting and non-linear Simplex search methods,were applied,respectively,to determine the ozone mass transfer coefficient during absorption and both methods give almost the same mass transfer coefficient.While for chemical absorption with ozone decomposition reaction,the common linear least square fitting method is not applicable for the evaluation of ozone mass transfer coefficient due to the difficulty of model linearization for describing ozone concentration dissolved in water.The nonlinear Simplex method obtains the mass transfer coefficient by minimizing the sum of the differences between the simulated and experimental ozone concentration during the whole absorption process,without the limitation of linear relationship between the dissolved ozone concentration and absorption time during the initial stage of absorption.Comparison of the ozone concentration profiles between the simulation and experimental data demonstrates that Simplex method may determine ozone mass transfer coefficient during absorption in an accurate and high efficiency way with wide applicability.
文摘In this paper, we discuss a new method employed to tackle non-linear partial differential equations, namely Double Elzaki Transform Decomposition Method (DETDM). This method is a combination of the Double ELzaki Transform and Adomian Decomposition Method. This technique is hereafter provided and supported with necessary illustrations, together with some attached examples. The results reveal that the new method is very efficient, simple and can be applied to other non-linear problems.
基金This work is supported by the NSF of China,No.10371017NSF Grant of Hangzhou Dianzi University KYS091504025.
文摘A new partial pricing column rule is proposed to the basis-deficiency-allowing simplex method developed by Pan.Computational results obtained with a set of small problems and a set of standard NETLIB problems show its promise of success.
文摘A PID parameters tuning and optimization method for a turbine engine based on the simplex search method was proposed. Taking time delay of combustion and actuator into account, a simulation model of a PID control system for a turbine engine was developed. A performance index based on the integral of absolute error (IAE) was given as an objective function of optimization. In order to avoid the sensitivity that resulted from the initial values of the simplex search method, the traditional Ziegler-Nichols method was used to tune PID parameters to obtain the initial values at first, then the simplex search method was applied to optimize PID parameters for the turbine engine. Simulation results indicate that the simplex search method is a reasonable and effective method for PID controller parameters tuning and optimization.
文摘This study adopts the Dantzig’s Simplex method to investigate optimization of sand casting parameters for optimum service performance. Some process variables and mechanical properties were adapted into the Simplex method. Aluminium alloy samples were cast, machined and subjected to a series of mechanical tests. From the body of data collected, linear functions and constraint equations were formulated and employed in the Dantzig’s Simplex method for optimization of process parameters. The results showed that the Simplex method can be adapted for studying performance opti- mization of castings.
文摘This work presents an application of the Simplex Method for solving an optimal planning problem for cancer treatment by radiotherapy. Linear Programming can aid the optimal planning for radiation therapy, where the concern is to apply a high enough radiation in the tumor while saving significantly healthy regions or critical organs.
基金supported by the National Natural Science Foundation of China (41721003, 41974022, 41774024, 41874001)Open Research Fund Program of the Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, China(20-02-05)
文摘We review three derivative-free methods developed for uncertainty estimation of non-linear error propagation, namely, MC(Monte Carlo), SUT(scaled unscented transformation), and SI(sterling interpolation). In order to avoid preset parameters like as these three methods need, we introduce a new method to uncertainty estimation for the first time, namely, SCR(spherical cubature rule), which is no need for setting parameters. By theoretical derivation, we prove that the precision of uncertainty obtained by SCR can reach second-order. We conduct four synthetic experiments, for the first two experiments, the results obtained by SCR are consistent with the other three methods with optimal setting parameters, but SCR is easier to operate than other three methods, which verifies the superiority of SCR in calculating the uncertainty. For the third experiment, real-time calculation is required, so the MC is hardly feasible. For the forth experiment, the SCR is applied to the inversion of seismic fault parameter which is a common problem in geophysics, and we study the sensitivity of surface displacements to fault parameters with errors. Our results show that the uncertainty of the surface displacements is the magnitude of ±10 mm when the fault length contains a variance of 0.01 km^(2).
文摘In Europe, computation of displacement demand for seismic assessment of existing buildings is essentially based on a simplified formulation of the N2 method as prescribed by Eurocode 8(EC8). However, a lack of accuracy of the N2 method in certain conditions has been pointed out by several studies. This paper addresses the assessment of effectiveness of the N2 method in seismic displacement demand determination in non-linear domain. The objective of this work is to investigate the accuracy of the N2 method through comparison with displacement demands computed using non-linear timehistory analysis(NLTHA). Results show that the original N2 method may lead to overestimation or underestimation of displacement demand predictions. This may affect results of mechanical model-based assessment of seismic vulnerability at an urban scale. Hence, the second part of this paper addresses an improvement of the N2 method formula by empirical evaluation of NLTHA results based on EC8 ground-classes. This task is formulated as a mathematical programming problem in which coefficients are obtained by minimizing the overall discrepancy between NLTHA and modified formula results. Various settings of the mathematical programming problem have been solved using a global optimization metaheuristic. An extensive comparison between the original N2 method formulation and optimized formulae highlights benefits of the strategy.
文摘The paper presents an approach for avoiding and minimizing the complementary pivots in a simplex based solution method for a quadratic programming problem. The linearization of the problem is slightly changed so that the simplex or interior point methods can solve with full speed. This is a big advantage as a complementary pivot algorithm will take roughly eight times as longer time to solve a quadratic program than the full speed simplex-method solving a linear problem of the same size. The strategy of the approach is in the assumption that the solution of the quadratic programming problem is near the feasible point closest to the stationary point assuming no constraints.
文摘In this study we discuss the use of the simplex method to solve allocation problems whose flow matrices are doubly stochastic. Although these problems can be solved via a 0 - 1 integer programming method, H. W. Kuhn [1] suggested the use of linear programming in addition to the Hungarian method. Specifically, we use the existence theorem of the solution along with partially total unimodularity and nonnegativeness of the incidence matrix to prove that the simplex method facilitates solving these problems. We also provide insights as to how a partition including a particular unit may be obtained.
文摘This paper demonstrates the approximate analytical solution to a non-linear singular two-point boundary-value problem which describes oxygen diffusion in a planar cell. The model is based on diffusion equation containing a non-linear term related to Michaelis-Menten kinetics of enzymatic reaction. Approximate analytical expression of concentration of oxygen is derived using new Homotopy perturbation method for various boundary conditions. The validity of the obtained solutions is verified by the numerical results.
文摘For a specific combustion problem involving calculations of several species at the equilibrium state, it is simpler to write a general computer program and calculate the combustion concentration. Original work describes, an adaptation of Newton-Raphson method was used for solving the highly nonlinear system of equations describing the formation of equilibrium products in reacting of fuel-additive-air mixtures. This study also shows what possible of the results. In this paper, to be present the efficient numerical algorithms for. solving the combustion problem, to be used nonlinear equations based on the iteration method and high order of the Taylor series. The modified Adomian decomposition method was applied to construct the numerical algorithms. Some numerical illustrations are given to show the efficiency of algorithms. Comparisons of results by the new Matlab routines and previous routines, the result data indicate that the new Matlab routines are reliable, typical deviations from previous results are less than 0.05%.
文摘In this paper, a new hybrid algorithm based on exploration power of a new improvement self-adaptive strategy for controlling parameters in DE (differential evolution) algorithm and exploitation capability of Nelder-Mead simplex method is presented (HISADE-NMS). The DE has been used in many practical cases and has demonstrated good convergence properties. It has only a few control parameters as number of particles (NP), scaling factor (F) and crossover control (CR), which are kept fixed throughout the entire evolutionary process. However, these control parameters are very sensitive to the setting of the control parameters based on their experiments. The value of control parameters depends on the characteristics of each objective function, therefore, we have to tune their value in each problem that mean it will take too long time to perform. In the new manner, we present a new version of the DE algorithm for obtaining self-adaptive control parameter settings. Some modifications are imposed on DE to improve its capability and efficiency while being hybridized with Nelder-Mead simplex method. To valid the robustness of new hybrid algorithm, we apply it to solve some examples of structural optimization constraints.
基金Western Transport Construction Science and Technology Project of the Ministry of Transport of China ( No. 2009318000046)
文摘An iterative algorithm for modeling of non-linear joint by the displacement discontinuity method (DDM) was described, and the effect of the non-linear joint on the in-situ stress field was investigated in this paper. The Barton-Bandis (BB) non-linear joint model and failure criterion were adopted in the new DDM program. Using this program, the stress field around the non-linear joint was obtained, the parameters analysis of the joint was carried out, and the deformation and stress distribution of the joint were studied. The simulation results show that: (1)the in-situ stress is significantly affected by the joint; (2)the increase of stiffness, friction angle, and thickness of the joint affect the stress concentration in different ways; (3)the influence distance of the joint changes with the angle of the joint; (4)the deformation and stress of the joint change with the point position.