This paper proposes a Graph regularized Lpsmooth non-negative matrix factorization(GSNMF) method by incorporating graph regularization and L_p smoothing constraint, which considers the intrinsic geometric information ...This paper proposes a Graph regularized Lpsmooth non-negative matrix factorization(GSNMF) method by incorporating graph regularization and L_p smoothing constraint, which considers the intrinsic geometric information of a data set and produces smooth and stable solutions. The main contributions are as follows: first, graph regularization is added into NMF to discover the hidden semantics and simultaneously respect the intrinsic geometric structure information of a data set. Second,the Lpsmoothing constraint is incorporated into NMF to combine the merits of isotropic(L_2-norm) and anisotropic(L_1-norm)diffusion smoothing, and produces a smooth and more accurate solution to the optimization problem. Finally, the update rules and proof of convergence of GSNMF are given. Experiments on several data sets show that the proposed method outperforms related state-of-the-art methods.展开更多
Aiming at the low recognition accuracy of non-negative matrix factorization(NMF)in practical application,an improved spare graph NMF(New-SGNMF)is proposed in this paper.New-SGNMF makes full use of the inherent geometr...Aiming at the low recognition accuracy of non-negative matrix factorization(NMF)in practical application,an improved spare graph NMF(New-SGNMF)is proposed in this paper.New-SGNMF makes full use of the inherent geometric structure of image data to optimize the basis matrix in two steps.A threshold value s was first set to judge the threshold value of the decomposed base matrix to filter the redundant information in the data.Using L2 norm,sparse constraints were then implemented on the basis matrix,and integrated into the objective function to obtain the objective function of New-SGNMF.In addition,the derivation process of the algorithm and the convergence analysis of the algorithm were given.The experimental results on COIL20,PIE-pose09 and YaleB database show that compared with K-means,PCA,NMF and other algorithms,the proposed algorithm has higher accuracy and normalized mutual information.展开更多
兴趣点推荐是基于位置社交网络中的研究热点之一。首先对从Web of Science收集的兴趣点推荐研究文献进行了分析;然后分析了影响兴趣点推荐的多种因素,并在分析传统兴趣点推荐方法基础上重点从用户历史签到信息建模和用户社交生成信息提...兴趣点推荐是基于位置社交网络中的研究热点之一。首先对从Web of Science收集的兴趣点推荐研究文献进行了分析;然后分析了影响兴趣点推荐的多种因素,并在分析传统兴趣点推荐方法基础上重点从用户历史签到信息建模和用户社交生成信息提取两个方面对基于深度学习的兴趣点推荐方法进行了分析;最后,对未来可能提高兴趣点推荐效果的研究方向进行了展望。展开更多
基金supported by the National Natural Science Foundation of China(61702251,61363049,11571011)the State Scholarship Fund of China Scholarship Council(CSC)(201708360040)+3 种基金the Natural Science Foundation of Jiangxi Province(20161BAB212033)the Natural Science Basic Research Plan in Shaanxi Province of China(2018JM6030)the Doctor Scientific Research Starting Foundation of Northwest University(338050050)Youth Academic Talent Support Program of Northwest University
文摘This paper proposes a Graph regularized Lpsmooth non-negative matrix factorization(GSNMF) method by incorporating graph regularization and L_p smoothing constraint, which considers the intrinsic geometric information of a data set and produces smooth and stable solutions. The main contributions are as follows: first, graph regularization is added into NMF to discover the hidden semantics and simultaneously respect the intrinsic geometric structure information of a data set. Second,the Lpsmoothing constraint is incorporated into NMF to combine the merits of isotropic(L_2-norm) and anisotropic(L_1-norm)diffusion smoothing, and produces a smooth and more accurate solution to the optimization problem. Finally, the update rules and proof of convergence of GSNMF are given. Experiments on several data sets show that the proposed method outperforms related state-of-the-art methods.
基金This work was supported by the National Natural Science Foundation of China(Grant No.61501005)the Anhui Natural Science Foundation(Grant No.1608085 MF 147)+2 种基金the Natural Science Foundation of Anhui Universities(Grant No.KJ2016A057)the Industry Collaborative Innovation Fund of Anhui Polytechnic University and Jiujiang District(Grant No.2021cyxtb4)the Science Research Project of Anhui Polytechnic University(Grant No.Xjky2020120).
文摘Aiming at the low recognition accuracy of non-negative matrix factorization(NMF)in practical application,an improved spare graph NMF(New-SGNMF)is proposed in this paper.New-SGNMF makes full use of the inherent geometric structure of image data to optimize the basis matrix in two steps.A threshold value s was first set to judge the threshold value of the decomposed base matrix to filter the redundant information in the data.Using L2 norm,sparse constraints were then implemented on the basis matrix,and integrated into the objective function to obtain the objective function of New-SGNMF.In addition,the derivation process of the algorithm and the convergence analysis of the algorithm were given.The experimental results on COIL20,PIE-pose09 and YaleB database show that compared with K-means,PCA,NMF and other algorithms,the proposed algorithm has higher accuracy and normalized mutual information.
文摘兴趣点推荐是基于位置社交网络中的研究热点之一。首先对从Web of Science收集的兴趣点推荐研究文献进行了分析;然后分析了影响兴趣点推荐的多种因素,并在分析传统兴趣点推荐方法基础上重点从用户历史签到信息建模和用户社交生成信息提取两个方面对基于深度学习的兴趣点推荐方法进行了分析;最后,对未来可能提高兴趣点推荐效果的研究方向进行了展望。